Overview

From the perspective of a programmer, lg-text is made up of several libraries:
1. liblgtext is the main text vetrieval libvary; 2. liblqutil defines a number of useful
geneval voutines, mostly for file and string manuipulation, and 3. liblgervor deals
with error handling.

You'll probably end up using a mixture of these libraries in practice. If you link
against liblgtext you will also need to link against the other libraries; if you link
against liblqutil you will need to link against liblgerrov, but you can use liblqutil
without liblgtext. In the same way, liblgerror stands alone and can be used without
any of the other libvaries.

You will therefore need to link with the options ““ligtext’ ““llqutil’ “-llgerrov’ in that
order. You may also need to use “L’ to specify the divectory containing the libvaries,
depending on your installation, and “-I' to name the divectory with the include files.
The default places ave ‘/usr/local/lib/lgtext’ and ‘/usr/local/lib/lgtext/include’ for
these, respectively.

The funétions in each libvary all have a common prefix, §tarting with LQ, as fol-
lows: 1. LQT is used by text vetrieval routines; 2. LQU is used by liblqutil routines;
3. LQM is used for a number of memory-velated voutines; 4. LQE is used for error
handling routines.

Since efficiency is a major part of text retrieval, some of the routines documented
here ave actually implemented as macvos. 1t is deliberately unspecified as to which
these are, so that you can't vely on the implementation. You must thevefore avoid
having side-effects in pavameters to function calls, as any pavameter may be
evaluated multiple times.

Some of the routines have an ‘_ after their prefix, and some have a ‘p’ instead; the
‘p"is a reminder that the routine concerned is private to the lqtext libvaries, and shold
not normally be used in client software.

To make them easier to copy and use in other programs, many of the example cli-
ents shipped with lg-text have funétion names that begin with 1Qc_ (the C stands
for Client), so that they are unlikely to conflict with anything you're alveady using.
The sample clients ave located in the lg-text/src/lgtext divectory; the samples in this
manual ave in the lg-text/doc/samples divectory.

Database
Error Handling
Input
Language .
Memory
Other

Output .
Retrieval
Tracing .
Utilities

. 31
. 63
- 33

. 25

Database/Database

§[Functions in this category ave related to manipulating an lg-text database as a
whole.

Usually when you are working with lg-text, you will first call LQT IntTFROM-
Arcv (in the Database/Defaults category), and then pass the return value from that
as an argument to LQT OPENDATABASE; before exiting, you should normally call
LQT CLOSEDATABASE.

LQT AddActionOnClose 3
LQT CheckDatabaseVersion 4
LQT CloseDatabase 4
LQT CurrentlyHaveWriteAccess 4
LQT ObtainReadOnlyAccess 5
LQT ObtainWriteAccess v « « o 5
LQT OpenDatabase 5
LQT SyncDatabase 5
API void
LQT_AddActionOnClose(db, Description, Action, Flags)
t LQTEXT Database *db; The given Action function will be called whenever

Char‘%DeSCﬂPtion" LQT CroseEDATABASE or LQT SYNCDATABASE is
int (* Action)(

« LOTEXT Database * called. ﬂThe $tring Descriptior} is used in trace anfl
% debugging messages, and also in error messages; it
unsigned int Flags; should be a human-readable description of the
action that the function is performing, or it could be
an ASCII string containing the name of the fun&ion. The Description $tring is not
copied; a pointer to it is retained. Therefore, it is an error to free it after calling LQT -
AppAcTIoNONCrOSE. [The given Flags argument may be any combination of LQT_on -
sYNC and LQT_ON_CLOSE using bitwise or. If the LQT_on_sync flag is given, the given
Action is called by LQT SyncDartaBasE; if LQT_ON_CLOSE is given, the given Action is
called by LQT CroseDatasase. It is unusual to have an action for the Sync case and not
for the Close case, but it is not forbidden. {[You can register any number of funétions in
this way. The most recently registered function is called fir§t, and so on. LQT -
OpENDATABASE uses this function to register the following functions, in order, so that
LQT FrusHBLockCacHE is called last: 1. LQT FrusuBrockCacHE (Write out cached low-
level data blocks); 2. LQT WriTECURRENTMAXWID (Write out largest allocated wip);
3. LQTpFlushWIDCache (Write out cached wip index blocks); 4. LQTp_-
FlushLastBlockCache (Write out cached lastblock data); 5. LQT -

Database/Database
../liblqtext/close.c

Database/Database
../liblgtext/Igrverno.c

Database/Database
../liblqtext/close.c

Database/Database,
Database/Files
../liblgtext/smalldb.c

SYNCANDCLOSEALLKEYVALUEDATABASES (Flush and close all open Dynamic Hashing
(ndbm) key-value databases) §[You can see these called by running a client with the
Debug trace flag set (e.g. Iqwordlist -t Debug). § Notes: The list of functions registered
may change between revisions of 1g-text, and is given here for illustrative purposes. § See
Also: LQT OpeEnDaTABASEF (opposite); LQT CroseDaraBase* (below); LQT OpENKEY-
VALUEDATABASEF (p. 38).

API void Checks that the current database is compatible with
LQT_CheckDatabaseVersion(db) this version of the library. Some versions of
t LQTEXT Database *db; liblgtext may have a backwards compatibility mode,

which this function will enable. This routine is
called automatically whenever an lg-text database is opened. 3 Notes: The liblgtext
library is capable of maintaining backward compatibility with earlier versions; for
example, Release 1.13 could read a database created with Release 1.12; this feature is not
presently included, however. In practice, it's almost always possible to index the data
again rather than using backwards compatibility modes, and performance is usually then
better. § Errors: Fatal error if the database is incompatible with the current version of the
lgtext library.

API int Closes the current lg-text database. Any actions that
LQT_CloseDatabase(theDatabase) have been regié}ered with 1LQT -
t LQTEXT Database *theDatabase; ADDACTIONONCLOSE are performed, including the
ones that liblgtext has registered. It is not necessary
to call LQT SyncDaTaBask before closing a database, as LQT CroseDaraBask does this.
All pending data is flushed, and all file descriptors that have been opened by liblgtext
functions are closed. Currently, not all allocated memory is freed, but any such memory
is not lost, because it will be reused on a subsequent call to LQT OpPENDATABASE.
$ Returns: zero. $ See Also: LQT AppAcTioNONCrosE* (previous page); LQT OPENDATA-
Base* (opposite); LQT SyncDaraBase* (opposite).

API int Returns non-zero if and only if the given database is

LQT_CurrentlyHaveWriteAccess(db) open with write access. § Notes: Write access may

t LQTEXT Database *db; on some systems be exclusive, so that no other pro-

cess can open the database, neither for reading nor

for writing. You should not rely on this, however. $ See Also: LQT OBTAINWRITEACCESs*
(opposite); LQT OpeNDATABASEF (Opposite).

LQT_AddActionOnClose Database/Database, p. 3

LQT_CloseDatabase Database/Database, p. 4

LQT_ObtainWriteAccess Database/Database, Data-
base/Files, p. 5

LQT_OpenDatabase Database/Database, p. 5

LQT_OpenKeyValueDatabase Database/Dynamic Hashing,
Database/Files, p. 38

LQT_SyncDatabase Database/Database, p. 5

API int Obtains read-only access to the current database.

LQT_ObtainReadOnlyAccess(db) This is called automatically by LQT OpEnDATABASE
t LQTEXT Database *db; if appropriate. If the database was previously open

for writing, it should be closed first with

LQT CroseDataBase or LQT SYNCDATABASE. $ Returns: I. zero on success 2. —I on fail-

ure or error g Errors: A corrupt database may cause a fatal or E_BUG error. 8 See Also:

LQT OrexDaraBase? (below); LQT OsTaiNWriTeAccess? (below); LQT OpENKEY-

VALUEDATABASEF (p. 38); LQT CrosEDATABASE (opposite).

API int Grants write access to the current database. This is
LQT_ObtainWriteAccess(db) called automatically by LQT OpenDaTABASE if
t LQTEXT Database *db; appropriate. $ Returns: 1. zero on success 2. —1 on
error or failure Notes: Write access may on some
systems be exclusive, so that no other process can open the database, neither for reading
nor for writing, You should not rely on this, however; on some systems, multiple clients
may succeed in writing, and will corrupt the database. 3 Errors: A corrupt database may
cause a fatal or E BUG error. $See Also: LQT OraiNREADONLYAcCCEss ' (above);
LQT OprexDaraBase? (below).

API t LQTEXT Database *
LQT_OpenDatabase(Options, flags, modes)
t IqdbOptions *Options; Opens the lg-text database referred to in the given
int flags; Options obje; flags and modes are as for open(2),
i modes; although in all cases the lg-text directory must
already exist. § The only valid Options object at the
moment is the value returned by LQT IniTFRoMARGY, which can only be called once dur-
ing the lifetime of a process. 8 Notes: Since you can currently only have a single database
open in any given program, there is not yet a need for a way to open a specific database;
this will change in the next release. $ Returns: A pointer to an opaque object describing
the database. The pointer is suitable for use with LQT CroseDataBase. % See Also:
LQT _IntTFROMARGV? (p. 7); LQT CroseDATABASE? (opposite).

API int Syncs the current 1g-text database; that is, writes any
LQT_SyncDatabase(theDatabase) pending data blocks to disk, and closes and deletes

t LQTEXT Database *theDatabase; any temporary files. You could think of this func-

tion as closing the database and then opening it
again, except that it doesn’t actually do that. § Any actions that have been registered with
LQT AppActioNnONCrosk with the LQT_oN_syNc flag are performed, including the ones

LQT_CloseDatabase Database/Database, p. 4

LQT_InitFromArgv Database/Defaults, p. 7

LQT_ObtainReadOnlyAccess Database/Database, Data-
base/Files, p. 5

LQT_ObtainWriteAccess Database/Database, Data-
base/Files, p. 5

LQT_OpenDatabase Database/Database, p. 5

LQT_OpenKeyValueDatabase Database/Dynamic Hashing,
Database/Files, p. 38

Database/Database,
Database/Files
../liblgtext/smalldb.c

Database/Database,
Database/Files
../liblgtext/smalldb.c

Database/Database
../liblqtext/open.c

Database/Database
../liblgtext/close.c

that liblgtext has registered internally. It is not necessary to call LQT SyNcDATABASE
before closing a database, as LQT CroseDaTaBask does this. § Returns: zero. § See Also:
LQT AppAcTioNONCLOSE (p. 3); LQT OrENDATABASE* (previous page); LQT CLOSEDA-
TABASE® (p. 4).

LQT_AddActionOnClose Database/Database, p. 3
LQT_CloseDatabase Database/Database, p. 4
LQT_OpenDatabase Database/Database, p. 5

Database/Defaults

This category velates to user preferences, which may be found in the database confi-
guration file README, in the environment or on the command-line on opevating
systems wheve those make sense, or in a per-user configuration file.

Currently, most of the preferences and configuration code exists only as a set of
place-holders.

A program should do the following on $tartup: 1. Set the global variable prog-
name to a useful value; 2. Call LQT INntTFROMARGYV to obtain an Options object;
this may vesult in argv being changed. 3. Handle any program-specific command-
line options; 4. Call LQT OpenDATABASE with the Options object obtained earlier,
and also with 0_RDONLY or O_RDWR as appropriate.

Finally, on exit, the program should call LQT CroseDATABASE; this is optional if
you only used read-only access to the database.

LQT GetOption« .«o 7
LQT InitFromArgv 7
LQT InitialiseCharacterTypes 8
LQT PrintDefaultUsage 8
API void * This function returns the value of a configuration
LQT_GetOption(Options, Name) option. The options at present include: 1. ‘direc-

t lqdbOptions *Options;

: tory’, which is the name of the directory containing
char *Name;

the lg-text database; 2. ‘Stop list, which is the name
of a file containing words that are not indexed,;
3. ‘file search path’, which is a colon-separated list of directories that are searched for docu-
ments during indexing and retrieval, and 4. ‘phrase match level’, which determined how
precisely phrases are matched. $ Returns: A pointer to the actual value; do not free this
value. $ See Also: LQT OpeNDATABASE? (p. 5).

API t lqdbOptions * This function is called to Initialise the 1g-text
LQT_InitFromArgv(argc, argv) libraries. It sets the global variable ‘progname’ from
int argg;

argv[o], but does not remove any leading direc-
tories; if you want just the command name to
appear in error messages and other output, you
should set progname in main() before calling LQT InitTFrRoMARGv. §[After setting prog-
name, LQT InrTFRoMARGY handles any lg-text command-line options. Currently, each

char **argv;

LQT_OpenDatabase Database/Database, p. 5

Database/Defaults
../liblgtext/defaults.c

Database/Defaults
../liblgtext/defaults.c

Database/Defaults,
Database/Words,
Language/Stemming
../liblgtext/&ype.c

Database/Defaults
../liblgtext/defaults.c

option is turned into either -z if it does not take an argument, or -Z if it take an argument.
As a result, you should ignore -z and -Z options if they appear, together with the argument
to -Z, and you should not give your program a -z or -Z option. This behaviour will change
completely in a future release of lg-text, when improved command-line argument hand-
ling is introduced. [The command line options currently understood include: 1. -d dir,
to specify a database directory 2. -m plhla, to specify whether to match phrases precisely,
heuristically, or approximately; 3. -t flags, to turn on tracing; the given flags should be a
string of debugging flag names separated by the vertical bar (). An example would be -t
TracelDebug, but you will usually need to quote the argument to protect it from the shell.
The value List will print a li§t of available values. § Restrictions: Must be called before any
other liblgtext functions. 3 Returns: A pointer to an object used to represent options; this
object should be passed to LQT OpEnDaTaBask(). 8 See Also: LQT OpENDATABASEF (p. 5).

LIBRARY void Initialises the tables used to determine whether a
LQTp_InitialiseCharacterTypes(db) given character is part of a word or not. §[This func-
t LQTEXT Database *db; tion is called automatically by LQT -
OrenDATABASE(). $ Returns: zero on success.

API void Prints to stderr a usage message that describes com-
LQT_PrintDefaultUsage(Options) mand-line options specific to (and interpreted by)
t lgdbOptions *Options; liblgtext. You should call this if an unknown com-

mand-line option was found, other than -z or -Z.
s Notes: This routine will change in the next release, with an entirely new argument pro-
cessing mechanism. § See Also: LQT INrTFROMARGV* (previous page).

LQT_InitFromArgv Database/Defaults, p. 7 LQT_OpenDatabase Database/Database, p. 5

Database/Retrieval

Funcétions in this category ave used to get information back from the database. This
is what it's all about: the funétions this category are the main rationale for the exis-
tance of the database package.

LQT FIDToDocumentTitle9
LQT FIDToFileInfo . . .)
LQT. Fmders‘tWIDMatchmgPattern P)
LQT FindFirstWIDMatchingPrefix 1I
LQT FindMatchEnds . . . P & ¢
LQT. FmdNextWIDMatchmgPattern T & ¢
LQT FindNextWIDMatchingWildCard 12
LQT GetFileModes12
LQT GetWordPlaces13
LQT GetWordPlacesWhere13
LQT Getpblock13
LQT GetpblockWhere14
LQT NameToFID B 78
LQT. ReadWordFromFxleInfo P 71
LQT ReadWordFromStringPointer I5
LQT WIDToWord15
LQT WIDToWordInfo16
LQT WordToWID16
API char *
LQT_FIDToDocumentTitle(db, FID, Name)

t LQTEXT Database *db; Returns a document title (from the database ‘titles’

t FID FID; file) for a given FIp. A binary search is used to

char *Name,

locate a line in the titles file which starts with the
given FID, as a decimal Asc11 number, followed by a
tab; the remainder of that line up to a newline or EoF is returnd. The second (Name)
argument is only used on error. 8 Returns: 1. the title on success, in a static buffer 2. The
given Name pointer on error. $ Errors: Warns if the title file can’t be opened. 8 Notes: The
‘1gkwic’ client uses this funéion to expand ${Title}.

API t FileInfo * Returns the in-memory t_FileInfo struct associated
LQT_FIDToFileInfo(db, FID) with a given 1D, reading the information from the
t LQTEXT Database *db; database as necessary. The returned value, if non-
t FID FID; . . S , .
zero, is created with mallog; it is the caller’s responsi-

bility to free the storage. $ See Also: LQT NamEeTo-

FID* (p. 14); LQT_DesTROYFILEINFO* (p. 35). 8 Returns: 1. the t FileInfo * on success;

LQT_DestroyFileInfo Database/Documents, Memory, p.35 LQT_NameToFID Database/Retrieval, Database/Docu-
ments, p. 14

Database/Retrieval,
Database/Documents
../liblqtext/gettitle.c

Database/Retrieval,
Database/Documents
../liblgtext/fileinfo.c

Database/Retrieval,
Database/Words
../liblgtext/wordinfo.c

2. NULL on error. § Errors: Warns if the database can’t be opened. 8 See Also: LQT Name-
ToFID* (p. 14); LQT DesTrOYFILEINFO* (p. 35).

API t WID
LQT_FindFirstWIDMatchingPattern(
db,
Pattern,
PatternLength,
PrefixLength,
Matcher,
Argument)
t LQTEXT Database *db;
unsigned char *Pattern;
int PatternLength;
int PrefixLength;
int (* Matcher)(
/* prefix with ‘the’ in order to avoid old gcc bug */
t LQTEXT Database *thedb,
unsigned char *theString,
int theStringLength,
unsigned char *thePattern,
int thePatternLength,
int thePrefixLength,
unsigned char *theArgument
)
unsigned char *Argument;
Returns the lowest wip whose word matches the given Pattern. §[The Pattern need not
be NUL-terminated; the given PatternLength argument is used to find the end of the Pat-
tern. §[The given PrefixLength argument must specify the number of leading characters,
if any, in the given Pattern that form a constant prefix. If there are no such characters,
matching is likely to be several orders of magnitude slower, as LQT -
FINDFIRSTWIDMATCHINGPATTERN Will have to try every word in the database vocabu-
lary, one at a time, until it finds one that matches. §[The given Matcher argument must be
a pointer to a function that will try to match the string to the given pattern, and that will
return zero only on a match. The constant LQT WIDMATCH_FAILED is available in
<liblgtext.h> to be returned by the given Matcher funcion, indicating that LQT -
FINDFIRSTWIDMATCHINGPATTERN should fail and return zero immediately. This might
be used if the given Matcher function is called with a string lexically greater than the larg-
est that could ever match it, or after reporting an error. § The given Argument is passed
on to the Matcher function, for the convenience of the caller. $ Returns: The wip on suc-
cess, and zero on failure. $ Errors: Warns if a database format error is detected. $ See Also:
LQT WorpToWID? (p. 16).

LQT_DestroyFileInfo Database/Documents, Memory, p.35

LQT_NameToFID Database/Retrieval, Database/Docu-
ments, p. 14

LQT_WordToWID Database/Retrieval, Database/Words,
p.16

API t WID
LQT_FindFirstWIDMatchingPrefix(db, Prefix, PrefixLength)

t LQTEXT Database *db; Returns the lowest wip whose word matches the
char *Prefix; given Prefix. {[The Prefix need not be nul-ter-
int PrefixLength;

minated; the given PrefixLength argument is used
to find the end of the Prefix. Returns: The wip on
success, and zero on failure. $ Errors: Warns if a database format error is detected. § See
Also: LQT WorpToWID* (p. 16).

API t OffsetPair *
LQT_FindMatchEnds(db, Buffer, Length, StartBlock, BIE, WIB, NumberOfWords)

t LQTEXT Database *db; Returns pointers to the start and end of the matched
char 'FB‘fe“ N text in the given buffer. LQT FINDMATCHENDS
unsigned int Length; must be called with at least one block of data
char *StartBlock; .

ansigned long BIF; (FILEBLOCKSIZE in <globalsh> , usually 64 bytes)
unsigned long WIB; either side of the block containing the match. Pro-
int NumberOfWords; viding more blocks before the matched block is

more likely to result in a correct return value, as
there are some special cases involving words spanning block boundaries that are best
dealt with by looking a block further back until a block boundary is found that has a space
to one side of it,and LQT FinoMaTcHENDs does this. § The Buffer argument is the text
from the file, with StartBlock being a pointer to the first character in the block containing
the match. The B1r and wiB arguments are the Block In File and Word In Block fields
from the match, and the NumberOfWords argument determines the number of words in
the match, for setting the match end pointer. $ Returns: 1. a t OffsetPair on success, con-
taining pointers to the first matched charac¢ter and the last matched character. 2. zero if
the match wasn't found $ See Also: LQT READWORDFROMSTRINGPOINTERY (p. 15).

API t WID
LQT_FindNextWIDMatchingPattern(

LQT_ReadWordFromStringPointer Database/Retrieval, LQT_WordToWID Database/Retrieval, Database/Words,
Database/Documents, p. 15 p.16

Database/Retrieval,
Database/Words
../liblgtext/wordinfo.c

Database/Retrieval,
Database/Documents
../liblqtext/matchend.c

Database/Retrieval,
Database/Words
../liblqtext/wordinfo.c

Database/Retrieval,
Database/Words
../liblgtext/wordinfo.c

Database/Retrieval,
Database/Physical
../liblgtext/smalldb.c

db, Returns the lowest wip whose word matches the

§VID, given pattern, and that is greater than the given wip
artern, argument. The pattern is a §tring, which must be an
PatternLength, . .
PrefixLength all-lower-case prefix. The given wildcard character
Matcher, must be either * or ?, to indicate zero or more follow-
Argument) ing characters or exactly one following character,
t LQTEXT Database *db; respectively. §[The Prefix need not be nul-ter-
tWID WID; minated; the given PrefixLength argument is used

unsigned char *Pattern; to find the end of the prefix. § Returns: The wip on
int PatternLength;

int Prefixength; success, and zero on failure. § Errors: Warns if a
int (* Matcher)(database format error is detected. § See Also:
t LQTEXT Database *thedb, LQT _FINDFIRSTWIDMATCHINGPATTERNY (p. 10).
unsigned char *theString,
int theStringLength,
unsigned char *thePattern,
int thePatternLength,
int thePrefixLength,
unsigned char *theArgument
)

unsigned char *Argument;

API t WID

LQT_FindNextWIDMatchingWildCard(db, WID, Prefix, PrefixLength)
t LQTEXT Database *db; Returns the lowest wip whose word matches the
t.WID WID; given pattern, and that is greater than the given wip
char *Prefix; argument. The pattern is a §tring, which must be an
int PrefixLength;) &

all-lower-case prefix. The given wildcard character
must be either * or ?, to indicate zero or more following characters or exactly one follow-
ing character, respectively. {[The Prefix need not be nul-terminated; the given Prefix-
Length argument is used to find the end of the prefix. 8 Returns: The wip on success, and
zero on failure. § Errors: Warns if a database format error is detected. 3 See Also:
LQT FindFirstWIDMatchingWildCard (undocumented);

API void Returns the current file modes, as determined by
LQT_GetFileModes(db, Flagsp, Modesp) LQT OBTAINREADONLYACCESS or LQT -

t LQTEXT Database *db; OBTAINWRITEACCESS, in Flagsp and Modesp. The

int *Flagsp; d val itable f .

int *Modesp; returned values are suitable for passing to open(2).

s Errors: Passing null pointers causes a fatal (E -

BUG) error. $See Also: LQT OpeNDATABASE (p. 5); LQT OBTAINWRITEACCESS® (p. 5);
LQU_Eoren* (p. 72).

LQT_FindFirstWIDMatchingPattern Database/Retrieval,
Database/Words, p. 10

LQT_ObtainWriteAccess Database/Database, Data-
base/Files, p. 5

LQT_OpenDatabase Database/Database, p. 5

LQU_Eopen Utilities/Files, p. 72

API t WordPlace *

LQT_GetWordPlaces(db, WID, Block, BlockLength, NextOffset, NumberExpected)

t LQTEXT Database *db;

t WID WID;

unsigned char *Block;

unsigned int BlockLength;
unsigned long NextOffset;
unsigned long *NumberExpected;

LQT MAKEMATCHESWHERE® (p. 17).

Reads all the places for a given word into memory,
and returns a freshly malloc’d array of t WordPlaces.
It is the caller’s responsibility to free the resulting
array. §[The arguments are as for LQT -
GETWORDPLACESWHERE. $ See Also: LQT GET-
WorpPLACESWHEREF (below);

API t WordPlace *
LQT_GetWordPlacesWhere(
db,
WID, Block, BlockLength,
NextOffset,
NumberExpected,
AcceptFunc)
t LQTEXT Database *db;
t WID WID;
unsigned char *Block;
unsigned int BlockLength;
unsigned long NextOffset;
unsigned long *NumberExpected;
int (* AcceptFunc)(
t LQTEXT Database ¥,
t WID,
t WordPlace *
)

Used to read the matches from disk for the given
wiD. [A WordPlace describes a single occurrence
of a word. Hence, if you call this fun¢tion with the
wiD of ‘the’, you'll get back an array large enough to
hold every occurrence of ‘the’ in the entire database.
The AcceptFunc argument is a function that is
called before each match is inserted into the array; it
can return either zero or one. If it returns zero, the
match is not inserted into the array; this can save
memory, and also allows you to process the matches
as they are read from disk, instead of waiting for
them all before doing anything with them. {[The
given Block argument is a pointer to an in-memory
buffer holding the first few bytes of data; usually
this comes from the ‘widindex’ fixed record length
file. $Notes: This function is very low-level; nor-
mally, you should use LQT MAKEMATCHES or

LQT MAKEMATCHESWHERE instead. $ See Also: LQT GETWorpPracest (above);
LQT GerpBLocKWHERE? (overleaf); LQT STRINGTOPHRASE* (p. 22); LQT MAKEMATCHES-

WaEere? (p. 17).

API t pblock *
LQT_Getpblock(db, WordInfo)
t LQTEXT Database *db;
t WordInfo *WordInfo;

Returns a freshly malloc'd t_pblock containing all of
the WordPlaces for a given WordInfo; one for each
occurrence of that word in the database. § Returns:
1. the number of words added on success; 2. —1 if the
file couldn’t be opened. 8 Errors: Warns if the file

can’t be opened. § See Also: LQT GETpBLOCKWHEREF (overleaf).

LQT_GetWordPlaces Database/Retrieval, Database/Physical,

p-13

LQT_GetWordPlacesWhere Database/Retrieval, Data-

base/Physical, p. 13

LQT_GetpblockWhere Database/Retrieval, Data-
base/Update, Database/Physical, p. 14

LQT_MakeMatchesWhere Retrieval/Matching,
Retrieval/Phrases, p. 17

LQT_StringToPhrase Retrieval/Phrases, p.22

Database/Retrieval,
Database/Physical
../liblgtext/rpblock.c

Database/Retrieval,
Database/Physical
../liblgtext/rpblock.c

Database/Retrieval,
Database/Physical
../liblgtext/rpblock.c

Database/Retrieval,
Database/Update,
Database/Physical

../liblgtext/rpblock.c

Database/Retrieval,
Database/Documents
../liblgtext/fileinfo.c

Database/Retrieval,
Database/Documents
../liblgtext/readword.c

API t pblock *
LQT_GetpblockWhere(db, WordInfo, AcceptFunc)

t LQTEXT Database *db; Look up a word in the database... and return a list of
t WordInfo *WordInfo; all the WordPlaces where it's found. The
m:é&g;};fg;:ﬁgﬁ . AccePtFung is called for each place as it is read off
L WID, the disk, with the given db, the wip and the new
t WordPlace * WordPlace as arguments. If the AcceptFunc returns
) a positive value, the WordPlace is accepted; other-

wise, it is not included in the returned t pblock.
Note that it is possible to end up with a pblock with no WordPlaces at all if the
AcceptFunc never returns a positive value. An AcceptFunc of NULL is considered to
return 1 in every case. $ Returns: a freshly malloc’'d t_pblock containing all of the Word-
Places from the disk that the AcceptFunc accepted, and with NumberOfWordPlaces set
to the number of such places. § Notes: Normally you would use LQT MAKEMATCHES
instead of this function. This funcion is used internally, and also by lg-text clients that
update the database efficiently. 8 Errors: Database format errors are nearly always fatal.
s See Also: LQT MakeMATCHES (p. 17).

API t FID Returns the 1D associated with a given file name

LQT_NameToFID(db, Name) ¢ Returns: 1. the FID on success 2. zero on failure
t—LQTEXT—Database “dby $See Also: LQT FIDToFireInrof (p. 9); LQT GET-
char *Name,

MaxORALLOCATEFID* (p. 36). $Errors: Warns if
the database can’t be opened. If the filename is not
matched in the database, no warning is given, but zero is returned.

API t WordInfo *
LQT_ReadWordFromFileInfo(db, FileInfo, Flags)

t LQTEXT Database *db; The same as LQT READWORDFROMSTRINGPOINTER,
t—Fﬂ‘eInfg F ﬂellnf(” but uses a FILE * that the caller has created in the
unsigned int Flags; given t_FileInfo structure. 3 Notes: See LQC -

MakeIneurt in the lqaddfile client for one way to
create a FileInfo; that routine will move into the Ap1 in a future release, but probably with
slight changes to its interface. $ See Also: LQT READWORDFROMSTRINGPOINTERF (0ppo-
site).

LQT_FIDToFileInfo Database/Retrieval, Database/Docu-
ments, p.9

LQT_GetMaxOrAllocateFID Database/Documents, p. 36

LQT_MakeMatches Retrieval/Matching, Retrieval/Phrases,
p.17

LQT_ReadWordFromStringPointer Database/Retrieval,
Database/Documents, p. 15

API t WordInfo *
LQT_ReadWordFromStringPointer(db, Stringpp, Startp, Endp, Flags)

t LQTEXT Database *db; Returns the next natural-language word from the
char **Stringpp; given NUL-terminated $tring. § The definition of a
char *Startp; word for the purpose of this routine is determined
CONST char *Endp; o
unsigned int Flags; partly by the definitions for LQT StarRTsWoRrD,
LQT ONLYWITHINWORD and LQT ENDSWORD in
the header file <wordrulesh> , and partly on the configuration file in the database directory,
where indexnumbers, minwordlength and maxwordlength may be set. {If the argu-
ments are all null, the effect is to reset the routine ready to start a new string, and no use-
ful value is returned in that case. §[The given Flags argument may either be zero or any
combination of LQT READWORD_IGNORE_COMMON and LQT_ READWORD_WILDCARDS,
or'd together. §[Characters are read from the string, incrementing *Stringpp as each byte
is processed, until a recognised word is found. If the LQT READWORD_IGNORE -
coMMoN flag was set in Flags, LQT READWORDFROMSTRINGPOINTER continues until
either a word is found that has not been registered as being too common to index, or the
end of the string is reached. [If Startp is not a NULL pointer, *Startp is set to point to the
first character in the word that has been found in the given Stringpp (not to the malloc’d
copy in the result). § If Endp is a NULL pointer, the string is considered to be terminated
by the first zero byte reached; otherwise, Endp must point to the first character not in the
$tring; normally, Endp would be set to point to the terminating NuL byte. § If the LQT -
READWORD_WILDCARDS flag is set, the ‘Wild Card’ characters * and ? are allowed within
words. Such characters do not count as punctuation for the returned WordInfo flags.
s Returns: the next WordInfo on success, or zero if there are no more words to read in the
string. 3 Notes: All client programs and library routines which parse words use this rou-
tine or the companion LQT REapWorDFrROMFILEINFO routine. This is very important,
because lg-text relies on word counts within each block of text to be the same on retrieval
as they were on indexing, and if different routines parsed the data each time there would
be a chance of discrepancies. 8 Bugs: The interface to this routine is somewhat ugly, and
may be changed in the next release with the addition of a Reset routine and a block offset
counter.

API char * Returns the word corresponding to a given wib.
LQT_WIDToWord(db, WID) Returns: 1. the word on success 2. zero on failure,
t LQTEXT Database *db; or if the wordlist database parameter was set to off
£ WID WiD; when the word was last written to the database
$ Notes: LQT WIDToWorp may be inefficient or

unavailable if the wordlist parameter in the database config file is set to off. See the

Database/Retrieval,
Database/Documents
../liblgtext/readword.c

Database/Retrieval,
Database/Words
../liblgtext/wordinfo.c

Database/Retrieval,
Database/Words
../liblgtext/wordinfo.c

Database/Retrieval,
Database/Words
../liblgtext/wordinfo.c

lgwordlist program for alternate ways of obtaining access to the index vocabulary.

API t WordInfo *
LQT_WIDToWordInfo(db, WID)
t LQTEXT Database *db;
t WID WID;

Returns the in-memory WordInfo structure for a
given wip. $ Returns: 1. t WordInfo * on success;
2. NULL on failure, or if th given wip argument was
zero. § Errors: Warns if a database format error is
detected. See Also: LQT WorpToWID? (below).

API t WID

LQT_WordToWID(db, Word, Length)
t LQTEXT Database *db;
char *Word,;
unsigned int Length;

Returns the wip for a given Word. It is not neces-
sary that the word be NUL terminated. The Length
argument is the number of bytes in the Word, not
including any trailing NuL byte 8 Returns: 1. the
WID on success 2. 0 on failure g See Also: LQT WID-

ToWorpInro* (above). § Errors: Fatal error if the database can’t be opened.

LQT_WIDToWordInfo Database/Retrieval, Data-
base/Words, p.16

LQT_WordToWID Database/Retrieval, Database/Words,
p.16

Retrieval/Matching

This section describes routines used for matching words and phrases, and for fetching
the results.

LQT AllPhrasesOfLengthNOrMore 17
LQT MakeMatches17
LQT MakeMatchesWhere17
LQT ParseQuery18
LQT PrintAndAcceptOneMatch 18
LQT PrintAndRejectOneMatch18
LQT ResetPhraseMatch19

API t PhraseElement *
LQT_AllPhrasesOfLengthNOrMore(db, N, theQuery, Countp)

t LQTEXT Database *db; Finds all sequences of N or more words which occur

int N; in the data. For example, given the phrase ‘the bare-

char *theQuery;) PRI

footed boy was very slender’, and supposing ‘the’ to
long *Countp; .
be the only word for which LQT -

WorpIsINSToPLIsT returns true, LQT ALLPHRASESOFLENGTHNORMORE might find
‘barefooted boy’ and ‘boy was very’ and ‘very slender’ as sub-phrases that occur; if the
entire phrase occurs, it will be returned. [If a phrase of M words matches, all phrases of
lengths from N to M inclusive will also be returned. [It is the caller’s responsibility to
deallocate the returned array and its elements. § Returns: an array of t PhraseElement
structures, and the number of distinc¢t phrases found in *Countp. 8 Notes: This function
is experimental. It has not been optimised, and is currently unusable for long phrases as a
result.

API long This is equivalent to LQT MAKEMATCHESWHERE
LQT_MakeMatches(thedb, Phrase) with a null AcceptFunction, and is provided for con-
t LQTEXT Database *thedb; venience. § See Also: LQT STRINGToPHRASEF
t Phrase *Phrase; (p. 22); LQT MakeMaTcuESWHERE? (below).

API long
LQT_MakeMatchesWhere(db, Phrase, AcceptFunction)

LQT_MakeMatchesWhere Retrieval/Matching, LQT_StringToPhrase Retrieval/Phrases, p.22
Retrieval/Phrases, p. 17

Retrieval/Matching,
Retrieval/Phrases
../liblqtext/phrall.c

Retrieval/Matching,
Retrieval/Phrases
../liblgtext/phrase.c

Retrieval/Matching,
Retrieval/Phrases
../liblgtext/phrase.c

Retrieval/Matching,
Retrieval/Phrases
../liblqtext/query.c

Retrieval/Matching,
Retrieval/Phrases
../liblgtext/apmatch.c

Retrieval/Matching,
Retrieval/Phrases
../liblgtext/rpmatch.c

t LQTEXT Database *db; Matches the given phrase, and returns the number
t Phrase *Phrase; of successful matches. The given AcceptFunction is
int CrAcceptF“nCtion)(_ﬁ called for each match; it must return one of the fol-
t LQTEXT Database ¥, . . .
¢ Phrase * lowing flags as defined in <phrase.h> : either
t Match * rQMmatcH AccepT, which adds the match to the
% result, or qMaTcH REJECT, which does not add the
match to the result. In addition, either of these flags
may be combined (using bitwise or) with Lqmarcu_qurt, in which case LQT -
MakeMatcuHeEsWHERE will return the result colle¢ted so far and abandon further pro-
cessing, or LQMATCH_NEXT_FILE, in which case LQT MaKEMATcHESWHERE will not call
the AcceptFunction again until a match is found in a document with a different File Iden-
tifier (,1D). §{ A NULL AcceptFunction pointer is equivalent to one that always returns
LQMATCH_ACCEPT, except much more efficient. § Returns: The number of matches
accepted. All matches that are accepted are stored in the given Phrase object. § See Also:
LQT StrINCToPHRASE? (p. 22).

API t LQT Query * Parses the given $tring, and returns a Query object.

LQT_ParseQuery(db, theString) Returns: The new Query object, or LQT -
t—LQTEXT—Database “db; BADQUERY on error. §See Also: LQT StringTo-
char *theString; PrRrAsEF (p. 22)

API int
LQT_PrintAndAcceptOneMatch(db, Phrase, Match)
t LQTEXT Database *db; This is intended for use as a callback function to be

t Phrase *Phrase;

assed as an argument to LQT -
t Match *Match; b st QL

MAKEMATCHESWHERE. It prints each match to
stdout as it is read from disk, and also accepts it so
that it is retained in the Phrase data s$tructure. @ Returns: rQm accerT $See Also:
LQT STrINGTOPHRASE? (p. 22); LQT PRINTANDREJECTONEMATCH (below).

API int
LQT_PrintAndRejectOneMatch(db, Phrase, Match)
t LQTEXT Database *db; This is intended for use as a callback function to be

t Phrase *Phrase;

assed as an argument to LQT -
t Match *Match; b st QL

MAKEMATCHESWHERE. It prints each match to
stdout as it is read from disk, and also rejects it so
that it is not retained in the Phrase data structure. $ Returns: 1Qm accept $ See Also:
LQT STrINGTOPHRASE? (p. 22); LQT PRINTANDREJECTONEMATCH? (above).

LQT_PrintAndRejectOneMatch Retrieval/Matching, LQT_StringToPhrase Retrieval/Phrases, p.22
Retrieval/Phrases, p. 18

ARGSUSED2%/ Resets internal pointers within a phrase so that Retrieval/Matching,
API void LQT MakeMatcuEes can be called. This is also R/efi‘f"al/ Phrases
../liblgtext/phrreset.c
LQT_ResetPhraseMatch(db, thePhrase) called by LQT MAKEMATCHES and LQT -
t LQTEXT Database *db; - . .11 .
MaKEMATCHESWHERE, and is provided so that cli-
t Phrase *thePhrase;
ents can write their own phrase matching routines
compatibly. $ See Also: LQT STriNGToPHRASEF (p. 22); LQT MakeMatcuEs* (p. 17).

LQT_MakeMatches Retrieval/Matching, Retrieval/Phrases, LQT_StringToPhrase Retrieval/Phrases, p.22
p.17

Retrieval /Phrases

The most comnonly used lg-text functions ave in this category (and also in the Data-
base/Defaults section, §trictly speaking).

Functions in this category deal with converting a string into an internal data
structure vepresenting a phrase, and getting a li§t of matches for that phrase.

The intermediate Step involving the internal data structuve allows clients to deter-
mine useful information, such as how many words were recognised in the phrase,
without the overhead of doing the actual match.

LQT DestroyPhrase 21

LQT NumberOfWordsInPhrase 21

LQT PhraseToString 22

LQT StringToPhrase 22

LQT UnknownWordsInPhrase 22
API void Frees any memory associated with the given phrase, Retrieval/Phrases, Memory
LQT_DestroyPhrase(db, Phrase) and then frees the Phrase itself. After calling LQT - -/liblatext/freephrc

t LQTEXT Database *db;

‘ DESTROYPHRASE, it is an error to attempt to derefer-
t Phrase *Phrase;

ence the Phrase, and the operating system may
detect this and raise an exception or send a fatal sig-
nal. 3 Notes: LQT DesTrOYPHRASE does not follow the Next element of the given Phrase.
A caller doing this should take a copy of Phrase — Next before calling LQT -
DEsTROYPHRASE, as after the call the pointer itself will be inaccessible. 3 See Also:
LQT StrincToPurAsEF (overleaf).

ARGSUSED2*/ Retrieval/Phrases
API int ../liblgtext/phrnword.c

LQT_NumberOfWordsInPhrase(db, Phrase)

t LQTEXT Database *db;

t Phrase *Phrase;
Returns the number of recognised words in the phrase. Common words, or other things
that the various LQT ReapWorp functions would skip, are not included in the count. A
phrase containing no recognised words can never be matched. 3 Returns: the number of
words in the phrase. 8 See Also: LQT READWORDFROMSTRINGPOINTERY (p. 15).

LQT_ReadWordFromStringPointer Database/Retrieval, LQT_StringToPhrase Retrieval/Phrases, p. 22
Database/Documents, p. 15

Retrieval/Phrases
../liblgtext/phstring.c

Retrieval/Phrases
../liblgtext/phstring.c

Retrieval/Phrases
../liblgtext/phrunkw.c

API char * Returns a $tring representation of a phrase.</P>.
LQT_PhraseToString(db, Phrase) {[This can be used for tracing, or to give users feed-
t LQTEXT Database *db; back about how a phrase query was interpreted.
t Phrase *Phrase; $ Returns: a pointer to a freshly mallocd string,
which the caller should free. g See Also:
LQT StrincToPurAsE' (below).

API t_Phrase * Creates a data structure representing the natural
LQT_StringToPhrase(db, String) language phrase contained in the given String.
t LQTEXT Database *db; {{ Words in the phrase that could not possibly be in
char *String; the index are not included in the structure. This
could be because they are in the stop list or are too
short, or because the IndexNumbers parameter is set to ‘off’ in the database configuration
file and the words begin with a digit. Words that could be in the database, but are not,
are also excluded, but in this case the phrase cannot of course be matched. §{ Words end-
ing in * or ? are considered to be wildcards; they are expanded automatically by LQT -
MAKEMATCHESWHERE, or you can use LQT ExpPANDWILDCARD to iterate over all the
matches. § You can use LQT NUMBEROFWORDSINPHRASE on the returned result, if it is
not NULL, to determine the number of words in the string that were recognised as words
that are in the database. [The result of LQT STrRINGTOPHRASE can be passed to LQT -
MakeMaTtcHEs to find all occurrences of the phrase in the database.</P>. § Returns: the
created t_Phrase, or NULL if either an error occurred or there were no recognised words in
the given String. § See Also: LQT MAKEMATCHESWHERE (p. 17); LQT DESTROYPHRASE?
(previous page).

ARGSUSED2*/
API int
LQT_UnknownWordsInPhrase(db, Phrase)

t LQTEXT Database *db;

t Phrase *Phrase;
Returns the number of unrecognised words in the given phrase. A phrase containingany
unrecognised words can never be matched. § Notes: This number is not included in the
result of LQT NumBEROFWORDSINPHRASE. $ Returns: the number of unrecognised
words in the phrase.

LQT_DestroyPhrase Retrieval/Phrases, Memory, p. 21

LQT_MakeMatchesWhere Retrieval/Matching,
Retrieval/Phrases, p. 17

LQT_StringToPhrase Retrieval/Phrases, p. 22

Error Handling

Curvently, the Ig-text libvary uses a fairly simplistic ervor handling policy that can
result in calls to the system call <var>exit</var>. The funétion LQE_ERROR is
called with an argument indicating the severity of the error, combined with bitwise
‘o with any of a number of flags.

In addition, there are a number of wrappers for system calls that ave integrated
with the ervor handling mechanism. These routines perform in exactly the same
way as the corvesponding system calls or libvary funétions if there are no evrors, but,
in the event of an error, call LQE_ERROR with a much clearer message than (for
example) ‘pervor’ would generate.

void Prints an error message, treating the given format
Error(Severity, format, a, b, ¢,d,e,f, g, h) argument as a printf-style format. The remaining
unsigned int Severity; arguments are optional, as for printf. {The error
CONST char *format; .
intabodefgh message is prepended by the cox‘nmanfl name
(using the cmdname global variable, if set, or the
value of the $ cMDNAME environment variable otherwise), the program name (using the
value of the global ‘progname’, assigned by LQT InitFrRoMARGv from argv[o] if not
already set), and a string denoting the severity of the error, as determined by the Severity
argument. [The Severity argument is a combination using bitwise or of the values
defined in <error.h>, of which the most commonly used are as follows: [E_FATAL, which
makes Error call exit and terminate the program;</P>. { E_ZWARN, which makes Error
print ‘warning:’, and does not call exit; f{ E_BUG, used on an assertion failure or on detect-
ing a severe problem that should be caught by testing; if any trace flags are set, E.BUG
makes Error call abort to generate a core dump. §{ EEMEMORY; you should always
include this if you think it might not be safe to call malloc, for example because the heap
is corrupted or there is no more free memory. § E_SYS, which indicates a failed system or
library call, and makes Error print the corresponding system error message using errno;
be warned that on most systems, printf and other stdio functions may cause errno to be
set even when there is no error, since they call isatty, which sets errno as a side-effect.
{ E_INTERNAL, which makes Error prepend the message with the $tring ‘internal error:
s EEMULTILINE, which should be used on all lines of a multi-line error message where
Error is called multiple times; the last call to Error in the sequence must include the E -
LASTLINE flag; E_LASTLINE, which is only ever used on the last of a sequence of sev-

Error Handling
../liblgerror/error.c

eral successive calls to Error to build up a single message that spans several lines; in the
case of E_FATAL errors, it is only on this call that Error will call exit, for example. $ Bugs:
An embedded newline in a string will cause a core dump on some systems. Error
appends a newline automatically, so the safest thing to do is to omit the newline.

Tracing

The lg-text tracing mechanism may seem a little complex at first, because it provides
a rich AP1. The funétions bear close investigation, as they are used extensively within
all of the lg-text code, and ave designed to be very efficient.

You can turn on or off tracing on any of a large number of featuves separately,
using symbolic constants or string names.

The LQT TRACE funétion has an interface similar to ‘printf, and is thus very
straight forward to use.

The macro LQT TRACEFLAGSSET is very efficient and can be used in a test to
surround code that is only used when debugging or when providing move verbose
progress messages than usual.

LQT FlagsToString25
LQT ForBachTraceFlag26
LQT GetGivenTraceFlagsAsString 26
LQT GetTraceFlags26
LQT GetTraceFlagsAsString27
LQT SetTraceFile27
LQT SetTraceFlag27
LQT SetTraceFlagsFromString27
LQT StringToFlags28
LQT StringToWordFlags28
LQT Trace28
LQT TraceFlagsSet29
LQT UnSetTraceFlag29
LQT WordFlagsToString29

API char *
LQT_FlagsToString(Flags, WordFlagNamePairArray, Separator)

unsigned long Flags;

t_FlagNamePair *WordFlagNamePairArray;

char *Separator;
Returns a printable string representation of the given flags, primarily intended for
humans to read. The WordFlagNamePairArray argument is an array of (Name, Value)
pairs; for each such pair, if all set bits in Value are also set in the Flags argument passed to
LQT FLacsToSTRING, the corresponding Name string is appended to the result. The array
is terminated by a pair with a null Name pointer; this is used rather than a count so that
the array can be initialised at compile time. [Adjacent Names in the result are separated
with the given separator. If the flags are zero, the array is searched for a Value of zero, and,

Tracing
../liblqtext/prflags.c

Tracing
../liblqtext/trace.c

Tracing
../liblqtext/trace.c

Tracing
../liblqtext/trace.c

if one is found, the corresponding Name is used; to have a zero value return an empty
$tring, use a pair with Name pointing to a zero-length string, not a null pointer. If no zero
Value is found, the string "none" is used instead. § Returns: a pointer to a $tatically allo-
cated string. § Errors: Passing null or invalid values for Word FlagNamePairArray or Sep-
arator will cause unpredictable results. There must be enough memory to allocate the
result, which grows automatically as needed, but never shrinks. 3 See Also:

LQT STrINGTOFLAGSF (p. 28).

API int Calls the given function for each available trace flag,
LQT_ForEachTraceFlag(CallMe) The integer argument IsSet passed to the function is
Vof (* CallMe)(non-zero for those flags that are set in the current
chat "Name, trace flags, and zero for the others. [The flags are
unsigned int Value, >
int isSet defined in the <lgtrace.h> header file. 3 Returns:

% zero. #See Also: LQT Trace* (p. 28); LQT SETTRA-
ceFract (opposite).

API char *
LQT_GetGivenTraceFlagsAsString(Flags)
t TraceFlag Flags; This function works like LQT -

GETTRACEFLAGSASSTRING, except that it uses the

given flags instead of the current value of the lg-text trace flags. §[The caller should not

attempt to write into, or free, the result string. [The flags are defined in the <lgtrace.h>

header file. 8 Returns: non-zero if one or more flags satisfies the constraints $ Notes: You

can get a rather long line giving all possible flags using the C expression (t TraceFlag)

“(unsigned long) o, which provides a number with all bits set, as an argument to LQT -

GETGIVENTRACEFLAGSASSTRING. $ See Also: LQT Trace¥ (p. 28); LQT SETTRACEFLAGT

(opposite); LQT GerTracEFracs* (below); LQT GETTRACEFLAGSASSTRINGY (Opposite).

API t TraceFlag Returns the current value of the lg-text trace flags.
LQT_GetTraceFlags() The various flag values are defined in the <lgtrace.h>
header file, and may be combined (using bitwise or)
in any combination. {[The value returned by LQT GerTraceFracs should not normally
be used by itself in diagnostic or error messages. Instead, use LQT -
GETTRACEFLAGSASSTRING, which provides a more readable value for humans. 3 Returns:
the current lg-text trace flags, or'd together § See Also: LQT Trace* (p. 28); LQT SETTRA-
ceFLact (opposite); LQT UNSETTRACEFLAGT (p. 29); LQT SETTRACEFLAGSFROMSTRING

(opposite).

LQT_GetTraceFlags Tracing, p. 26
LQT_GetTraceFlagsAsString Tracing, p.27
LQT_SetTraceFlag Tracing, p.27
LQT_SetTraceFlagsFromString Tracing, p.27
LQT_StringToFlags Tracing, p. 28

LQT _Trace Tracing, p.28
LQT_UnSetTraceFlag Tracing, p.29

API char * Returns a static pointer to a $tring representation of
LQT_GetTraceFlagsAsString() the current lg-text trace flags. This is suitable for

printing in error messages, and can also be used
with LQT SETTRACEFLAGSFROMSTRING to save and restore flags in a machine-indepen-
dent way. [The caller should not attempt to write into, or free, the result string. [The
flags are defined in the <Igtraceh> header file. § Returns: a pointer to a private string.
s See Also: LQT Tracke¥ (overleaf); LQT SerTracEFLAGY (below); LQT UNSETTRACEFLAGH
(p. 29); LQT GETGIVENTRACEFLAGSASSTRINGF (opposite); LQT SETTRACEFLAGSFROM-
strinct (below).

API FILE * After this call, all Ig-text tracing output produced
LQT_SetTraceFile(newFile) with LQT Trace will be sent to the given file. It is
FILE *newFile; the caller'’s responsibility to ensure that the given
FILE * is valid and points to a file that is open for
writing. §[The default file used before LQT SETTRACEFILE has been called is stderr. An
argument of (F1LE *) NULL will reset the file to the default value, but will not close the
given stream. The file is also not when a database is closed; see LQT ADpAcTIONONCLOSE
for a way of changing this behaviour. $ Returns: the previous file pointer 3 See Also:
LQT Tracke* (overleaf); LQT SErTracEFLAGH (below); LQT AppAcTioNONCLOSE? (p. 3).

API t TraceFlag Adds the given argument to the current lg-text trace
LQT_SetTraceFlag(theFlag) flags. You can add several flags at a time by combin-
t TraceFlag theFlag; ing them with bitwise or. If you do, the return value

may be hard to decipher, although since the return
value is primarily of interest to internal liblgtext routines, this probably doesn’t matter.
$ Returns: non-zero if any of the the given flags were set. $ See Also: LQT Track* (over-
leaf); LQT UNSETTRACEFLAGT (p. 29); LQT GETTRACEFLAGST (OppOsite).

API char *
LQT_SetTraceFlagsFromString(theString)

char *theString; Attempts to set the lg-text trace flags by reading a
string representation of them. The string must be
in the format produced by LQT GETTRACEFLAGSASSTRING; in other words, a sequence of
words separated by the vertical bar. The various flag values are defined in the <Igtrace.h>
header file, and may be combined (using bitwise or) in any combination { If the return
value points to a NUL byte, the end of the string was reached without error; otherwise, it is
up to the caller to determine whether the extra unconverted text was expected.
$ Returns: a pointer to the first unconverted character in the given string § See Also:

LQT_AddActionOnClose Database/Database, p. 3
LQT_GetGivenTraceFlagsAsString Tracing, p.26
LQT_GetTraceFlags Tracing, p.26
LQT_SetTraceFlag Tracing, p.27
LQT_SetTraceFlagsFromString Tracing, p.27
LQT _Trace Tracing, p.28

LQT_UnSetTraceFlag Tracing, p.29

Tracing
../liblqtext/trace.c

Tracing
../liblqtext/trace.c

Tracing
../liblqtext/trace.c

Tracing
../liblgtext/trace.c

Tracing

../liblqtext/rdflags.c

Tracing

../liblqtext/rdflags.c

Tracing
../liblgtext/trace.c

LQT Trace® (overleaf); LQT SETTrRacEFLAGY (previous page); LQT GETTRACEFLAGSAS-
StrinG (previous page); LQT StrincToFracs* (below).

API char *
LQT_StringToFlags(String, Flagp, WordFlagNamePairArray, Separator)

char *String;

unsigned long *Flagp;

t_FlagNamePair *WordFlagNamePairArray;

char *Separator;
Tries to reverse the operation of LQT FracsToSTrING. In other words, LQT -
STRINGTOFLAGS takes a string which it assumes to be a sequence of names of flags found
in the given FlagNames array, separated by the given constant string, and returns the bit-
wise ‘or’ of the Value members corresponding to the Names that are found. [In addition,
a leading + or - is used to indicate that the following flags are to be added (with bitwise or)
or removed (usinbg bitwise and on their negation) from the result. 8 Returns: a pointer to
the first unconverted character in String, and the actual value in Flagp 8 See Also:
LQT StriNncToWorDpFracs* (below); LQT WorpFracsToSTRINGF (opposite).

API char *
LQT._StringToWordFlags(db, String, Flagp)
t LQTEXT Database *db; Tries to reverse the operation of LQT -
char *String; WorbpFracsToSTrRING. In other words, LQT -

unsigned long *Flagp; STRINGTOWORDFLAGS takes a string which it

assumes to be a sequence of names of flags as
defined in the header file <wordrulesh> separated by LQTpWordFlagSep (a comma), and
returns the bitwise ‘or’ of the Word Flags corresponding to the Names that are found.
s Returns: a pointer to the first unconverted character in String, and the actual value in
Flagp $ See Also: LQT StrincToWorDpFrAGs* (above); LQT WorDpFracsToSTRING (0ppo-
site).

API void
LQT_Trace(Flags, Format, a, b, ¢, d, e, f, g, h,1,j,k, I, m, n, 0)
t TraceFlag Flags; Prints diagnostic messages. The Flags argument

char *Format; must be one or more flags taken from <lgtrace.h>

and combined with bitwise or. If one of more of the
given Flags is set in the current lg-text trace flags, the remainder of the arguments are pas-
sed to fprintf §[For efficiency, it may be best to use LQT TRACEFLAGSSET first to determine
whether to call LQT Track, as the former is likely to be implemented as a short macro in
<lgtrace.n> , but currently LQT Track cannot be so implemented. [Each line of trace out-
put is preceded by the current program name, the word ‘trace’, and a $tring representation

LQT_GetTraceFlagsAsString Tracing, p.27
LQT_SetTraceFlag Tracing, p.27
LQT_StringToFlags Tracing, p. 28
LQT_StringToWordFlags Tracing, p. 28
LQT _Trace Tracing, p.28
LQT_WordFlagsToString Tracing, p. 29

of one or more of those flags in the Flags argument to LQT Trace which are set in the cur-
rent Iqtext trace flags. 8 See Also: LQT SETTRACEFLAGF (p. 27); LQT UNSETTRACEFLAGY
(below); LQT SETTRACEFLAGSFROMSTRING? (p. 27).

LIBRARY int Determines whether any of a particular group of
LQTp_TraceFlagsSet(QueryFlags) trace flags are set; if so, a non-zero value is returned,
t TraceFlag QueryFlags; otherwise zero. The flags may have been or'd

together, and are defined in the <Igtraceh> header
file.

For each such flag, all of the bits set in the flag have been be set in the argument to LQT -
TraceFLAGs in order for it to be considered as being set. § Returns: non-zero if one or
more flags satisfies the constraints $ Notes: This may be implemented as a macro; the pro-
totype shown may in that case have a different name. 3 See Also: LQT Trace* (opposite);
LQT SeTTRACEFLAGF (p. 27); LQT UNSETTRACEFLAGF (below); LQT GETTRACEFLAGS?

(p. 26).

API int The given flag is removed from the current lg-text
LQT_UnSetTraceFlag(theFlag) trace flags. You can combine multiple flag values
t TraceFlag theFlag; using bitwise or. §[This routine can be used in con-

junction with LQT GeTTracEFLAGS to unset all of
the current flags. $ Returns: 1 if any of the given flags were set, and o otherwise. 8 Errors:
An attempt to unset flags that were not set produces an error of type E_ZWARNIE -
INTERNAL. $ See Also: LQT Trace* (opposite); LQT GETTRACEFLAGS (p. 26); LQT SET-
TrACEFLAGSFROMSTRINGY (p. 27).

API char * Returns a printable string representation of the
LQT_WordFlagsToString(db, Flags) given WordFlags, intended for humans to read as
t LQTEXT Database *db; well as for use with the LQT WorDFLAGSTOSTRING
t WordFlags Flags funétion. The flags are defined in <wordrulesh> and

are explained under the Language category.
$ Returns: a pointer to a $tatically allocated string. 8 Errors: There must be enough mem-
ory to allocate the result, which grows automatically as needed, but never shrinks. § See
Also: LQT StrincToWorDFLAGs* (opposite); LQT FracsToStriNG? (p. 25).

LQT_FlagsToString Tracing, p.25
LQT_GetTraceFlags Tracing, p. 26
LQT_SetTraceFlag Tracing, p.27
LQT_SetTraceFlagsFromString Tracing, p.27
LQT_StringToWordFlags Tracing, p. 28

LQT _Trace Tracing, p.28
LQT_UnSetTraceFlag Tracing, p.29

Tracing
../liblqtext/trace.c

Tracing
../liblqtext/trace.c

Tracing
../liblqtext/prflags.c

Input

Curvently, this category is thinly populated; it contains a useful voutine for reading a
match in the format produced by all the lg-text clients, and veturning a data Struc-
ture that can be used with other funétions.

The Output category contains a routine that does the inverse operation, taking the
data structure and printing the information to a stdio §tream.

LQT StringToMatch L. 31
API char *
LQT_StringToMatch(db, Severity, theString, theMatchpp)
t LQTEXT Database *db; Converts a $tring representation of a match to a t -
int Severity; Match obje¢t. Leading and trailing white space on

char *theString;

 MatchStart *theMatchpp; the line is ignored. §[The match is considered to

consist of a number of aAsci1 decimal numbers fol-
lowed by a file name. The numbers are, in this order, the number of words matched, the
block within the file, the word within the block, and the File Identifier (t FID). There
may be an optional filename after the r1p. [If the 1D is given as zero, there must be a
filename, and this is given as an argument to LQT NaAMETOFID to complete the F1p entry
in the match. 8 Notes: The returned Match is contained in a static buffer and should not
be freed or overwritten. You must make a copy if you need to retain the information over
successive calls to LQT StrincToMarcH. The FileName field of the Match will point
either into the middle of the given $tring, or to an internal static buffer, or, in the case that
the given 1D was invalid, will be NULL §[A $tatic internal buffer is retained containing
the previous result of LQT NamEeToFID, for efficiency in the common case that there are
several matches in a row from the same document. § Returns: 1. NULL if there was no
error; in that case, *theMatchpp is set to either a pointer to a Match, or NULL if the line
didn’t contain a match. 2. On error, a string describing the problem is returned.

Input
../liblgtext/rmatch.c

Output

This category contains a routine for printing a match in the same format as the
Ig-text clients. It is typically several times faster than using printf.

LQT fPrintOneMatch 33
API void
LQT_fPrintOneMatch(db, theFile, FirstNumber, FileInfo, WordPlace)
t LQTEXT Database *db; Prints a single match to the given stdio file descrip-

FILE *theFile;

int Fir§tNumber;

t FileInfo *FileInfo;

t WordPlace *WordPlace;

tor, in a form that will subsequently be understood
by the routines and programs that read matches.
¢ Notes: Not all the information stored in the data-
base index for each match is printed by LQT -
FPRINTONEMATCH. A future release will allow you to change the print format (using a
Name Space).

Output
../liblqtext/pmatch.c

Database/Documents

§[The term ‘Documents’ is used to refer to the files that have been indexed, as opposed
to the files that make up the actual database. Funétionsin the Database/Documents
category thus deal with accessing the indexed documents.

LQT DestroyFileInfo 35
LQT FindFile 35
LQT GetFilterName 35
LQT GetFilterType « . . o o . .. 36
LQT GetMaxFID 36
LQT GetMaxOrAllocateFID 36
LQT UnpackAndOpen 36
LQT WriteCurrentMaxFID 36

API void
LQT_DestroyFileInfo(db, FileInfo)
t LQTEXT Database *db;
t FileInfo *FileInfo;

Frees the memory used by the given FileInfo. Nei-
ther the database nor the file described by the File-
Info is affe¢ted; LQT DesTrROYFILEINFO frees any
internal data structures associated with the FileInfo
and then frees the FileInfo itself. After calling LQT -

DestrOYFILEINFO, the FileInfo pointer is no longer valid, and should not be derefer-
enced. § See Also: LQT NaMETOFID* (p. 14); LQT FIDToFiLeINFO* (p. 9).

API char *

LQT_FindFile(db, Name)
t LQTEXT Database *db;
char *Name;

Returns a pointer to a full pathname, given a
filename as stored in the lg-text File index. The cur-
rent database DocPath is searched, and if that fails,
an attempt is made to find the file with .gz

appended, then with .Z appended. § The returned

$tring points to a static buffer, and should not be freed. The buffer is overwritten on suc-
cessive calls to LQT FinpFiLe(). 8 Bugs: Does not understand the archive name notation,

archive(filename).

LIBRARY char *

LQT_GetFilterName(db, FileInfo)
t LQTEXT Database *db;
t_FileInfo *FileInfo;

Returns a short name describing the file type associ-
ated with the given file. The value is static, and
should not be freed by the caller. 8See Also:
LQT GetFriterTyre’ (overleaf).

LQT_FIDToFileInfo Database/Retrieval, Database/Docu-

ments, p.9
LQT_GetFilterType Database/Documents, p. 36

LQT_NameToFID Database/Retrieval, Database/Docu-

ments, p. 14

Database/Documents, Memory
../liblqtext/fileinfo.c

Database/Documents

../liblgtext/docpath.c

Database/Documents
../liblgtext/filters.c

Database/Documents
../liblqtext/filters.c

Database/Documents
../liblgtext/getfid.c

Database/Documents

../liblqtext/setfid.c

Database/Documents
../liblgtext/unpack.c

Database/Documents

../liblgtext/setfid.c

LIBRARY int

LQT_GetFilterType(db, FileInfo, StatBuf)
t LQTEXT Database *db;
t FileInfo *FileInfo;
struct stat *StatBuf;

(below).

Determines the appropriate filter to use to read the
file represented by the given FileInfo; this is an
internal routine and will be replaced in the next
release. $ See Also: LQT UNPACKANDOPEN ¥

API t FID
LQT_GetMaxFID(db)
t LQTEXT Database *db;

Returns the largest allocated r1p. 3 Returns: 1. the
largest ¥1p already allocated. 2. 1 if no Fips have
been allocated. § Errors: as for LQT REaADBLOCK,
LQT OPENDATABASE.

API t FID

LQT_GetMaxOrAllocateFID(db, WriteCurrent)

t LQTEXT Database *db;
int WriteCurrent;

Allocates a new rID, and writes the new value to
disk. If the ‘WriteCurrent' argument is zero, the
value is only written in one on every 1,000 calls.

s See Also: LQT SyncDaraBase® (p. 5).

API int

LQT_UnpackAndOpen(db, FileName)
t LQTEXT Database *db;
char *FileName;

Tries to open the named file, using compress or gun-
zip as necessary. Can append a .Z or .gz to the file
name. Currently, LQT UNPACKANDOPEN makes a
copy of a file if necessary; a future version may cre-
ate a pipe, and the interface will change. 3 Returns:

1. an open file descriptor on success; 2. —1 if the file couldn’t be opened. 8 See Also:
LQT FinpFrLe* (previous page); LQT MakeINPUTF (p. 51).

API void
LQT_WriteCurrentMaxFID(db)
t LQTEXT Database *db;

Werites the cached value of the largest allocated r1p
to disk. This routine is registered by LQT -

OpPENDATABASE so that it is called automatically by
LQT CroseDATABASE. [It may also be useful to call

it directly for the purpose of debugging a new lg-text client that updates the database, for
example when running under a database. $See Also: LQT WrITECURRENTMAXWID?
(p. 56); LQT_SyNcDATABASEF (p. 5); LQT CLoSEDATABASE? (p. 4).

LQT_CloseDatabase Database/Database, p. 4
LQT_FindFile Database/Documents, p. 35

LQT_Makelnput Database/Update, Database/Documents,

p-51
LQT_SyncDatabase Database/Database, p. 5

LQT_UnpackAndOpen Database/Documents, p. 36
LQT_WriteCurrentMaxWID Database/Words, p. 56

Database/Dynamic Hashing

Funcétions in this category are velated to manipulating the dynamic hashing data-
base that Iq-text velies upon. A dynamic hashing database provides a key to value
mapping; the key can be any binary data, and so can the value.

Two dynamic hashing databases ave used by lg-text: the first is used to map a word
into a w1, that is, into a Word IDentifier number. The second is used to map a
filename into a F1D, that is, into a File IDentifter.

You can configure lg-text to use any of a number of different dynamic hashing
packages; ndbm is supplied with most Unix systems; Berkeley's ‘db’ package is
included with lg-text, along with Ozan Yigit's ‘sdbm’ package. Whichever package
you use, the result is essentially the same, except that some packages are faster or
move reliable than others. For large databases (say, several hundred megabytes), you
will probably need to use the db package, since it has fewer size limits than most oth-
ers.

The individual dynamic hashing packages provide documentation on the various
routines, such as DBM_FETCH and DBM_STORE, that you can use with the data-
bases. The lqword sample client uses routines that iterate over all entries in a data-
base, one by one.

LQT CloseKeyValueDatabase 37
LQT OpenKeyValueDatabase 38
LQT SyncAndCloseAllKeyValueDatabases 38
LQTp_CreateEmptyKeyValueDatabase 38
ARGSUSED*/ This currently does nothing, since the Key Value
APL int Databases are kept open. If the library is compiled
LQD;/IC}%:’K"YV"‘I“‘?D“*“’"Se(db) with dbm instead of ndbm, or with the cache dis-

abled, LQT CroseKeyDATABASE becomes active, so
it should be paired with every call to LQT -
OPENKEYVALUEDATABASE & See Also: LQTﬂSYNCANDCLOSEALLKEYVALUEDATABASES1:
(overleaf).

LQT_SyncAndCloseAllKeyValueDatabases Data-
base/Dynamic Hashing, Database/Files, p. 38

Database/Dynamic Hashing,
Database/Files
../liblgtext/smalldb.c

Database/Dynamic Hashing,
Database/Files
../liblgtext/smalldb.c

Database/Dynamic Hashing,
Database/Files
../liblgtext/smalldb.c

Database/Dynamic Hashing,
Database/Files
../liblgtext/smalldb.c

API DBM *
LQT_OpenKey ValueDatabase(db, FilePrefix)

t LQTEXT Database *db; Opens an ndbm-style database of the given name,

char *FilePrefix; creating it if the current database modes allow it.

The function keeps a cache of open databases, so

that if there is already an open database of the given name, its handle is simply returned.
{{ Opening a Key Value Database involves several file system accesses and using malloc to
obtain memory, so it’s much better to use the cached values. It is even better still to keep
frequently used Key Value Databases open, for example in a static variable, and to close
them only when the database is closed. Returns: A handle (usually a pBM * pointer) to
the named Key Value Database. 8 Errors: If the underlying ndbm-style database couldn’t
be opened, a fatal error is produced (E_FATALIE_SYS) indicating the problem. One pos-
sible cause of this is that $ HOME/LQTEXTDIR isn't a directory, or doesn’t exist, and
$LQTEXTDIR isn't set to point to a suitable alternate directory. Another possible problem
is that a previous run of 1qaddfile failed, and left the Key Value Databases locked for writ-
ing; the best thing to do in this case is to run the lqclean program and start again. § See
Also: LQT CroseKEYVALUEDATABASEF (previous page); LQT OpeNDATABASEF (p. 5);
LQT AppAcTioNONCLOSE (p. 3); LQT SyncDaraBase® (p.).

API int
LQT_SyncAndCloseAllKeyValueDatabases(db)
t LQTEXT Database *db; Closes all Key Value Databases that have been

opened, after writing any pending data to disk.
{[This function is registered automatically as an action to be performed when a database
is closed or on a call to LQT Sync, and should not normally need to be called directly. The
return value and argument are for compatibility with LQT ApbpActionONCrose. The
argument must be a null pointer, for future compatibility. § See Also: LQT OrenKEY-
VALUEDATABASEF (above); LQT ADDACTIONONCLOSEF (p. 3); LQT CLosEDATABASE? (. 4).

LIBRARY char *
LQTp_CreateEmptyKeyValueDatabase(db, Directory, prefix)
t LQTEXT Database *db; Some versions of dbm or ndbm provided with vari-

char *Direétory;

‘ ous Unix systems do not automatically create a new
char *prefix;

pBM file, even when asked to; it is necessary to cre-
ate the file with the open(2) or creat(2) system calls.
The original Unix dbm library was like this. {[This funétion creates the necessary files, in
the given Directory; the files will have names beginning with the given Prefix, and

LQT_AddActionOnClose Database/Database, p. 3

LQT_CloseDatabase Database/Database, p. 4

LQT_CloseKeyValueDatabase Database/Dynamic Hashing,
Database/Files, p. 37

LQT_OpenDatabase Database/Database, p. 5

LQT_OpenKeyValueDatabase Database/Dynamic Hashing,
Database/Files, p. 38

LQT_SyncDatabase Database/Database, p. 5

depending on the version of ndbm in use, may have a suffix such as .db; 8sp db uses a
single file, but most other implementations use two, one called Prefix.dir and one called
Prefix.pag. [This routine is called automatically by LQT OrENKEYVALUEDATABASE when
necessary, but is made available for general use for convenience. §Bugs: LQTp -
CreateEmptyKeyValueDatabase should be in liblqutil instead. § See Also: LQT OpENKEY-
VaLueDaTAaBASEF (Opposite).

LQT_OpenKeyValueDatabase Database/Dynamic Hashing,
Database/Files, p. 38

Database/Files

The term ‘Documents’ is used to refer to the files that have been indexed, as opposed to
the files that make up the a¢tual database. Funétionsin the Database/Files category
thus deal with accessing and manipulating the files in the lg-text database divectory
($LQTEXTDIR).

The funétions in this category ave at a low level; usually, theve is a higher level
routine that will do what you want, unless you are modifying the internals of
liblgtext, or are writing complex database update code.

Note that the category Utilities/Files also exists, and provides functions such as
LQU_IsDiR for determining whether a given string is the name of a divectory.

LQT BlockIsCached 41
LQT FlushBlockCache 42
LQT FlushOneBlockFromCache 42
LQT ReadBlock 42
LQT ReadFilterTable 42
LQT WriteBlock 43
LQT WriteVersionToDatabase 43
LQTpFlushWIDCache 43
API int Determine whether the block at a given offset in the
LQT_BlockIsCached(db, Block) data file is in the block buffer cache or not. Since

t LQTEXT Database *db;

LQT ReapBrock returns a pointer into the cache, it
unsigned long Block;

is a fatal error (E_BUG) if LQT WriTEBLOCK is called
for a block that is not cached. § The cache is always
large enough to hold at least the last two blocks returned by LQT ReapBrock. This is just
enough to ensure that the NextOffset field in a block’s header can be filled in after allocat-
ing the next block in a chain. 8 Returns: Non-zero if the block is cached, and zero other-
wise. $ Errors: Fatal error if the main data file can’t be opened or created. 3 Notes: As a
side-effec, the CurrentBlock variable in pbcache.c is set to point to the cached block; this
is used internally by the library routines in that file. 3 See Also: LQT ReapBrock* (over-
leaf); LQT WriTEBLOCK? (p. 43).

LQT_ReadBlock Database/Files, Database/Physical, p. 42 LQT_WriteBlock Database/Files, Database/Physical, p. 43

Database/Files,
Database/Physical
../liblqtext/pbcache.c

Database/Files,
Database/Physical
../liblqtext/pbcache.c

Database/Files,
Database/Physical
../liblqtext/pbcache.c

Database/Files,
Database/Physical
../liblqtext/pbcache.c

Database/Files,
Database/Defaults
../liblgtext/filtertb.c

LIBRARY int Writes any pending dirty blocks to the disk. Copies
LQT_FlushBlockCache(db) of the blocks are retained in memory, however, until

t LQTEXT Database *db; LQT CroseDATaBASE is called, and will be found by

LQT BrockIsCacHEeDp and hence by LQT -

ReapBrock if an attempt is made to read them again. When a database is opened, LQT -
OpeNDATABASE adds LQT FLusHBLOCKCACHE as an action to be performed automati-
cally whenever the database is flushed or closed. It should not be necessary to call this
code directly from outside the library, and it is made available primarily to aid in debug-
ging. 3 Errors: Fatal error (E_BUG) if the cache is dirty in read-only mode. 3 See Also:
LQT AppACTIONONCLOSEF (p. 3); LQT OPENDATABASEF (p. 5); LQT SYNCDATABASE
(p. 5); LQT CLosEDATABASE (p. 4).

LIBRARY int If there any data blocks that are waiting to be writ-

LQT_FlushOneBlockFromCache(db) ten out to disk, LQT FLusHONEBLOCKFROMCACHE

t LQTEXT Database *db; will write one of them out. § This function is inter-

nal to lg-text and users of the Physical layer of the

database. § Errors: Fatal error (E_BUG) if the cache is dirty in read-only mode. 3 See Also:
LQT FrusuBrockCacHEt¥ (above).

API unsigned char * Reads the block at the given byte offset, and returns
LQT_ReadBlock(db, Offset, WID) a pointer to the data. The data is §tored in a cache, so
t LQTEXT Database *db; it is important not to try and write beyond the end
?I\l);llggﬁlll%?g Offset; of the block or group of blocks as determined by
- ’ LQT ExTENDBLOCK or LQT FiNnpFrREEBrock. The
block must be written out with LQT WriteBrock if it has changed. In addition, the
block is not locked in memory, but LQT ReapBrock ensures that it is safe to read at least
one other block before writing this one out with LQT WriteBrock. 3 Returns: A pointer
to the data § Notes: Attempts to read beyond the end of the data file will extend the data-
base automatically. The data will be initialised to zero, except for the block headers,
whose NumberOfBlocks field will all be set to one. 8 Errors: Fatal error (E_BUG) if the
database can’t be opened or created. $ See Also: LQT ExTENDBLOCK (p. 46);
LQT FinDFREEBLOCKF (p. 46); LQT WrITEBLOCKF (Opposite).

API int Reads the filter table into memory if one was speci-
LQT_ReadFilterTable(db) fied. The filter table lists the file types that can be

t LQTEXT Database *db; indexed, and gives an index filter for each of them.

([If there is no ‘filtertable’ entry in the database con-
figuration file, a built-in lit of defaults is used. $ Returns: zero on success. $ See Also:

LQT_AddActionOnClose Database/Database, p. 3
LQT_CloseDatabase Database/Database, p. 4
LQT_ExtendBlock Database/Physical, p. 46
LQT_FindFreeBlock Database/Physical, p. 46
LQT_FlushBlockCache Database/Files, Database/Physical,
p42
LQT_OpenDatabase Database/Database, p. 5
LQT_SyncDatabase Database/Database, p. 5
LQT_WriteBlock Database/Files, Database/Physical, p. 43

LQT GetFiLTERTYPE? (p. 36).

API void
#ifdef ASCIITRACE
LQTp_WriteBlock(db, theFile, theLine, Block, Data, Length, theWID)

t LQTEXT Database *db;

char *theFile;

int theLine;
#else
LQT_WriteBlock(db, Block, Data, Length, theW1ID)

t LQTEXT Database *db;
#endif

unsigned long Block;

unsigned char *Data;

int Length;

t WID theWID;
Writes the given block to the database. Actually the block is saved in the cache, and if it
was originally obtained with LQT ReapBrock it's already in the cache, so LQT -
WrITEBLOCK simply marks it as dirty, needing to be saved. If you change data in a block
without calling LQT WriTEBLOCK, the changes usually won’t be written to disk (unless an
adjacent block in the cache is written). §{ The block must have a valid header; if the
block’s length field is larger than the Length argument, the extra blocks are marked as
free. The header is described in <blkheaderh> . 3 Errors: Format or consistency errors are
generally fatal. Attempting to write a block not in the cache will produce a warning.
$See Also: LQT FINDFREEBrOCK* (p. 46); LQT ReapBrock* (opposite); LQT Wri-
tEBrock? (above).

API void Writes the liblgtext library version to the database
LQT_WriteVersionToDatabase(db) so that LQT CueckDaTaBASEVERsTON will accept it.
t LQTEXT Database *db; This routine is called automatically when a new
lg-text database is created. § See Also:
LQT CHECKDATABASEVERSIONT (. 4).

LIBRARY int Writes any pending entries in the wip file cache out
LQTpFlushWIDCache(db) to disk. This must be done before closing the data-
t LQTEXT Database *db; base or exiting the running program if any changes
have been made. §{ When a database is opened,

LQTpFlushWIDCache is registered as an action to be performed on an LQT -
CroseDATABASE or LQT SYNCDATABASE, so it should not be necessary to call this funcion
direcily. [The ignored argument is for compatibility with LQT AbpAcTioNONCLOSE, as
is the return value. $ See Also: LQT SyncDaTABAsE® (p. 5); LQT CLOSEDATABASE® (p. 4);

LQT_CheckDatabaseVersion Database/Database, p. 4
LQT_CloseDatabase Database/Database, p. 4
LQT_FindFreeBlock Database/Physical, p. 46
LQT_GetFilterType Database/Documents, p.36
LQT_ReadBlock Database/Files, Database/Physical, p. 42
LQT_SyncDatabase Database/Database, p. 5
LQT_WriteBlock Database/Files, Database/Physical, p. 43

Database/Files,
Database/Physical
../liblqtext/pbcache.c

Database/Files
../liblgtext/lqwverno.c

Database/Files
../liblgtext/wordinfo.c

LQT ApDACTIONONCLOSE? (p. 3).

LQT_AddActionOnClose Database/Database, p. 3

Database/Physical

Routines in this category manipulate the database at the vaw file level; they deal
with data blocks on the havd disk, or with streams of raw bytes.

The compressed numbers package is also included in this category; although it is
in principle useful outside of Iq-text, and has in faét been used elsewhere several times
in the past, the routines in h/numbers.h and liblgtext/numbers.c usually need to be
modified, as they are very low level.

You should be warned that modifying the source of any of these routines, or using
them in any way incorrectly, is likely to lead to corruption in the databases you create
or manipulate: the integrity of an Iq-text database depends heavily on these routines.

This documentation is intended to be enough so that you can work with existing
code that uses these functions; you should be prepared to use the source to undersand
move if you need to use them.

LQT BlockIsFree« « . v v 45
LQT ExtendBlock 46
LQT FindFreeBlock 46
LQT FlushBlock 46
LQT SetBlockStatus 47
LQT sReadNumber 47
LQT sWriteNumber 47
API int Determine the status of the block at a given byte off-
LQT_BlockIsFree(db, Offset) set from the $tart of the data overflow file (data). An

t LQTEXT Database *db;

external file, freelist, is kept in the database direc-
unsigned long Offset;

tory; this file uses a single bit to represent the status
of each block, either in use or free. If the freelist file
is removed, subsequent attempts to write to the database will fail. Read-only access will
still work unless LQTRACE_READAFTERWRITE is set, whereupon LQT ReapBrock checks
the status of each block before returning it; it is an error to attempt to read an unallocated
block, although this not normally checked, for performance reasons. $ Returns: Non-
zero if the block is available, zero if it is free $ Notes: The first few blocks are reserved for
storing information about the database; they are marked as used automatically whenever
a database is created. {[The freelist file can be rebuilt by the lqmkfreelist program. [The
test program ‘free’ contains examples of using the Block Status funétions LQT -
BrockIsFrReE and LQT SETBLockSTATUS. It can also be used to edit the contents of the
freelist file. g Errors: Fatal error if the freelist file could not be opened 3 See Also:

Database/Physical
../liblqtext/pbcache.c

Database/Physical
../liblqtext/pbcache.c

Database/Physical
../liblqtext/pbcache.c

Database/Physical
../liblgtext/wblock.c

LQT SETBLoCcKSTATUSY (p. 47); LQT_FinDFREEBLOCKF (below); LQT READBLOCK F (p. 42).

API void

LQT_ExtendBlock(db, Offset, BlockCountp, BytesWanted)
t LQTEXT Database *db; LQT ExTeENDBLOoCK marks as many blocks as pos-
unsigned long Offset; sible following the given byte Offset as being used,

unsigned int *BlockCountp;

and increments the unsigned int pointed to b
unsigned long BytesWanted; g P Y

BlockCountp by the number of blocks added. The
number of blocks added is such that a single contiguous stretch of data starting at the
given Offset, and continuing for the number of blocks in *BlockCountp, does not cross
an LQT ReapBrock cache boundary. {[If the BytesWanted argument is non-zero, the
total number of blocks in BlockCountp when LQT ExTENDBLOCK returns will not be
more than one block greater than BytesWanted bytes. 8 Notes: BlockCountp must be
greater than zero on entry to LQT ExTeEnpBrock. $ Returns: The total number of blocks
in *BlockCountp $See Also: LQT FinpFreeBrock* (below); LQT SETBLOCKSTATUS

(opposite).

API unsigned long
LQT_FindFreeBlock(db, WID, BlockLengthp, BytesWanted)

t LQTEXT Database *db; Allocates a block from the free list, and marks it as
LWID WID; in use. The block is at least BLocks1zE bytes long,
unsigned int “BlockLengthp; and may be longer, as contiguous free blocks are
unsigned long BytesWanted;)]
combined to make a single longer block as long as
will fit in a single cache entry. If the BytesWanted argument is non-zero, the block will
not be more than BLocksizke bytes longer than than BytesWanted bytes. Since LQT -
FINDFREEBLOCK does not actually read the data from the disk (or cache), it is up to the
caller to ensure that LQT ReapBrock is called, and that the resulting block’s header is
filled in with NumberOfBlocks equal to the value that LQT FinpDFrREEBLOCK Stored in
BlockLengthp. 3 Returns: the byte offset in the data file of the block allocated, and also
the number of blocks allocated (in BlockLengthp). $ See Also: LQT BrockIsCacHED*
(p. 41); LQT BrockIsFrReE* (previous page); LQT SETBLOCKSTATUS (Opposite).

API void
LQT_FlushBlock(db, Block, ByteCount, NextOffset, LastStart, WID)

LQT_BlockIsCached Database/Files, Database/Physical,
p.41

LQT_BlockIsFree Database/Physical, p. 45

LQT_FindFreeBlock Database/Physical, p. 46

LQT_ReadBlock Database/Files, Database/Physical, p. 42

LQT_SetBlockStatus Database/Physical, p. 47

t LQTEXT Database *db; Writes out the given block to the cache. This is
unsigned char *Block; really the same as LQT WriTeBLoCK, except that it

int ByteCount; . . .
' . is used for the last block in each chain of matches.
unsigned long *NextOffset, *LastStart;

t WID WID;

API void Set the status of the block at a given byte offset in
LQT_SetBlockStatus(db, Offset, Status) the data file. §[Status must be either sET BLoCK -
t LQTEXT Database *db; AS_USED Or SET BLOCK AS FREE. In the former
?mSigned long Offset; (useD) case, the block is marked as being in use,
int Status; . .
and can be brought into the cache with
LQT ReapBrock. In the latter case (FREE), the block is marked as being available for
reuse. Since LQT SETBrockSTATUS does not access the actual data, it does not have access
to the block’s length. It is therefore the caller’s responsibility to call LQT -
SETBLocksTATUS for each contiguous block when a block header’s NumberOfBlock field
is greater than one. 3 Notes: This routine was called 2,785,338 times when indexing Shak-
espeare’s complete works. To try and speed things up, LQT SETBLocksTaTUS performs as
few checks as possible. See Also: LQT BLockIsFREE? (p. 45).

INLINE int
LQT_sReadNumber(Sp, Resultp, StartOfBuffer, LengthOfBuffer)
unsigned char **Sp; Reads a number from its compressed binary repre-

unsigned long *Resultp;
unsigned char *StartOfBuffer;
unsigned int LengthOfBuffer;

sentation $tored the given string. The pointer
pointed to by Sp is advanced to point to the first
unread byte of the buffer. The retrieved number is
stored in the variable pointed to by the given Resultp argument. § Returns: 1. —1 if the
entire number was not read, because it wasn’t all included in the given string; in this case,
the pointer referred to by Sp will have been advanced by the number of bytes read, but
the return value is useless. 2. Zero is returned if the number was read successfully. g See
Also: LQT sWriteNumser? (below).

INLINE int
LQT_sWriteNumber(Sp, Number, Base, Maxlen)
unsigned char **Sp; Writes a compressed binary representation of the

unsigned long Number;
unsigned char *Base;
unsigned int Maxlen;

given Number into the given string. The pointer
pointed to by Sp is advanced to point to the first
unwritten byte of the buffer. $ Returns: 1. -1 if the
string doesn't fit; in this case, the pointer referred to by Sp will have been advanced by the
amount of the number that fitted; 2. Zero is returned if the number was written

LQT_BlockIsFree Database/Physical, p. 45 LQT_sWriteNumber Database/Physical, p. 47

Database/Physical
../liblqtext/pbcache.c

Database/Physical
../h/numbers.h

Database/Physical
../h/numbers.h

successfully. § Notes: This fun¢tion and the companion LQT sREADNUMBER are central
to the operation of the 1g-text database package. If it were not for the use of compressed
numbers, the index would be too large to be useful. { The function is designed to work
best with small numbers; a number less than 127 is written out in a single byte, for
example, and a number less than 16383 is written in two bytes. For this reason, LQT -
sWRITENUMBER is most effectively used when writing a sorted sequence of numbers, as
then you can write only the difference between successive values, saving space. This
form of delta coding is used extensively by lg-text. $ See Also: LQT sREADNUMBER¥ (pre-
vious page).

LQT_sReadNumber Database/Physical, p. 47

Database/Update

These routines are for modifying an lg-text database. You may need to link against
src/lgtext/wordtable.o to use some of them in the curvent velease. See the lqaddfile
client for examples of using some of them.

LQT _AddWordPlaces

LQT DeleteWordFromIndex
LQT DeleteWordPlaces
LQT LastBlockInChain
LQT MakeFileInfo

LQT Makelnput
LQT MakeWordInfoBloc

LQT MakeWordInfoBlockHeader .

LQT PutWordInfoIntoIndex

LQT RemoveFileInfoFromIndex .

LQT RenameFileInIndex .
LQT SaveFileInfo .
LQT SetLastBlockInChain
LQT SortWordPlaces .
LQT UpdateWIDMatchCount .
LQT WriteWord AndWID

LQT WriteWordPlaces .

LQT Writepblock . S
LQTp_FlushLagtBlockCache .

. 49
. 49
. 50
. 50
. 50
.51
.51
.51
.52
.52
.52
.52
. 53
. 53
. 53
. 54
. 54
. 54
. 54

API unsigned long

LQT_AddWordPlaces(db, WordPlaces, WID, Offset, NumberToWrite)
Adds the given Word Places to the database for the
given wip. This routine is fairly low-level, and is
made available in the aAp1 for efficiency. You should
not attempt to use it without looking at examples in
the 1g-text clients that update the database, and also
reading the source of the function itself. § Returns: The number of places written.

t LQTEXT Database *db;

t WordPlace *WordPlaces;

t WID WID;

unsigned long Offset;

unsigned long NumberToWrite;

API int
LQT_DeleteWordFromIndex(db, Word)
t LQTEXT Database *db;
char *Word,;

Deletes the given word and associated data from the
database. The wip index entry for the LQT -
WIDToWorp function entry is retained, as is the
widindex file record, with a match count of zero. If
the word should appear in some subsequently
indexed file, this space is reclaimed. 3 Returns: 1. zero on success 2. —1 on error 3 Notes:
See LQC_UN~INDEXFILE in the lqunindex client for an example of using this funcétion.

Database/Update,
Database/Physical
../liblgtext/wpblock.c

Database/Update,
Database/Words
../liblgtext/wordinfo.c

Database/Update,
Database/Words
../liblqtext/pbcache.c

Database/Update,
Database/Files
../liblqtext/lastblk.c

Database/Update,
Database/Documents

../liblgtext/mkfinfo.c

API void
LQT_DeleteWordPlaces(db, FirstBlock, WID)

t LQTEXT Database *db; Deletes the word places from disk for a given wip,
unsigned long FirstBlock; marking the corresponding data blocks as
t WID WID;

unused.<P> §[The given FirstBlock argument is the
first block in the chain of the linked list of blocks for
the given wipn. If the data is contained entirely in the wip index block, LQT -
DeLETEWORDPLACES should not be called, and this is a fatal error. LQT -

DELETEWORDPLACES does not remove the wip < Word mapping from the wordlist Key
Value Database, and does not zero out the information in the widindex block. g Errors:
Fatal (E BUG) error if Fir§tBlock or wip are zero. s See Also: LQT DELETEPBLOCKY

(p. 55).

API unsigned char *
LQT_LastBlockInChain(db, WID, Offsetp, FirstUnusedBytepp, BlockLengthp)

t LQTEXT Database *db;

t WID WID;

unsigned long *Offsetp; /* in: first offset; Out: last offset */

unsigned char **FirstUnusedBytepp; /* out only */

unsigned int *BlockLengthp;
Returns the last block in the chain for a given wip. The value may have been set previ-
ously by LQT SETLasTBLOCKINCHAIN, or can be deduced by reading the chain from disk
a block at a time until the end is reached. 8 Returns: A pointer to the (extended) block in
the data cache g Errors: Fatal error (E_ BUG) if the value cannot be determined § See Also:
LQT SETLASTBLOCKINCHAINT (p. 53).

API t FileInfo * Creates a t_FileInfo structure to describe the given
LQT_MakeFileInfo(db, FileName) FileName. This routine should only be used if you
t LQTEXT Database *db; are going to add the given FileName to the given
char *FileName; lg-text Database db; to get a FileInfo describinga file
already in the index, use LQQT NAMETOFID and LQT -

FIDToFiLEINFO. 3 Returns: If the file is not already in the database, a new r1p is allocated,
and a newly malloc’d t_FileInfo object is returned, complete with a stdio FILE pointer
already opened, either as a file or as a pipe, depending on the file type and filter table; it is
the caller’s responsibility to call LQT DestrovFrLeInEo to free the memory and close the
stdio stream. [On error, or if the file is already in the database and has not changed since
it was last indexed, a warning is issued and a NULL pointer is returned. 8 Errors: If the file
can’t be found, or can't be opened, a warning is produced. 3 See Also: LQT DesTROY-
FireInNFo* (p. 35); LQT NaAMETOFID? (p. 14); LQT FIDToFrLEINEO* (p. 9); LQT GETFILTER-

LQT_Deletepblock Database/Words, Database/Update, p. 55

LQT_DestroyFileInfo Database/Documents, Memory, p. 35

LQT_FIDToFileInfo Database/Retrieval, Database/Docu-
ments, p.9

LQT_NameToFID Database/Retrieval, Database/Docu-
ments, p. 14

LQT_SetLastBlockInChain Database/Update, Data-
base/Files, p. 53

Tyee* (p. 36); LQT MakeInputt (below).

API FILE * Opens the document referred to by the given File-
LQT_Makelnput(db, FileInfo) Info for reading, using external input filters if neces-
t LQTEXT Database *db; sary.</P>. §[The returned $tdio §tream may refer to

t FileInfo *FileInfo; a pipe or to a file; use LQT DesTROYFILEINFO to
close it. [You must use LQT DEsTROYFILEINFO to

close the file and free the memory 8 Returns: A stdio stream open for reading, or NULL on
error. § Errors: Issues an error if a required external filter could not be started. 8 See Also:
LQT MakeFrLeINFo* (opposite); LQT DEsTROYFILEINFOF (p. 35); LQT GETFILTERTYPE?

(p. 36).

API unsigned long
LQT_MakeWordInfoBlock(db, WordInfo, pblock)

t LQTEXT Database *db; Tries to put the given pblock into the given Word-

t—WordIr{fO *WordInfo; Info’s index block, a buffer reserved for this pur-

t pblock “pblocl pose. $ Returns: 1. the number of places success-

fully added 2. o if no word places were given in

pblock 3 See Also: LQT PurWorpInroInTOINDEXF (overleaf); LQT MAKEWORDINFOB-
rockHEADER? (below). Errors: Warns if WordInfo already has a non-zero Offset.

LIBRARY void
LQT_MakeWordInfoBlockHeader(db, WordInfo, pblock)
t LQTEXT Database *db; Writes a database header block (a WIDindex entry)

t WordInfo *WordInfo;

into the given WordInfo. This is splitinto a separate
t_pblock *pblock;

routine so that the library can write a word block
header tentatively, using a different format for the
header if the header and the data all fit into the index block. LQT -
MakeWorDINFOBLocKHEADER determines the format to use by whether Word-

Info — Offset is non-zero. The difference is whether a fixed four bytes are used for the
total number of word places for this word, or whether a variable number of bytes, using
LQT sWRITENUMBER, are written. In the latter case, update in place is not possible, and
this format is therefore only used when WordInfo — Offset is zero, and any update would
in any case have to read and rewrite the word index block.

LQT_DestroyFileInfo Database/Documents, Memory, p. 35 LQT_PutWordInfoIntoIndex Database/Update, Data-
LQT_GetFilterType Database/Documents, p. 36 base/Words, p. 52
LQT_MakeFileInfo Database/Update, Database/Documents,
p-50
LQT_MakeInput Database/Update, Database/Documents,
p.s1
LQT_MakeWordInfoBlockHeader Database/Update, Data-
base/Words, p. 51

Database/Update,
Database/Documents
../liblqtext/filters.c

Database/Update,
Database/Words
../liblgtext/wordinfo.c

Database/Update,
Database/Words
../liblgtext/wordinfo.c

Database/Update,
Database/Words
../liblgtext/wordinfo.c

Database/Update,
Database/Documents
../liblqtext/fileinfo.c

Database/Update,
Database/Documents
../liblgtext/fileinfo.c

Database/Update,
Database/Documents
../liblgtext/fileinfo.c

API int
LQT_PutWordInfoIntoIndex(db, theWordInfo, Offset)

t LQTEXT Database *db; Each WordInfo $tructure contains a pointer to a
t WordInfo *theWordInfo; single data block, which is used to $tore the widin-
unsigned long Offser; dex header. This speeds up indexing, since the
header is needed at both the start of writing out
WordPlaces and at the end. LQT PurWorpINFOINTOINDEX arranges that index block be
written out to the widindex index file, using LQT WriTEWoRDINFOINDEXBLOCK. [A
wip must have been allocated for this word with LQT WrITEWorRDANDWID for this
word already, on this or some other program run. §[This routine is generally called after
LQT WRITEPBLOCK. ® Returns: zero g Errors: Warns if the WordInfo has a datablock but
no offset. If asciiTRACE was defined when the library was compiled, and if the
LQTRACE_READAFTERWRITE trace ﬂag is set, LQT PurWorbpINroInTOINDEX checks that
theWordinfo - wiDp corresponds to theWordInfo — Word, using LQT WorpToWID, and
produces a fatal (E_BUG) error if not.

API int
LQT_RemoveFileInfoFromIndex(db, FileInfo)
t LQTEXT Database *db; Removes the given FileInfo from the r1p < FileInfo

t FileInfo *FileInfo; maps. It is the caller’s responsibility to ensure that

the given F1D is not referenced anywhere in a saved
WordPlace. $ Returns: I. zero on success 2. —I on error g See Also: LQT NaMeToFID#
(p. 14); LQT DEstROYFILEINFO (p. 35). 8 Errors: Warns if the database can’t be opened

API int
LQT_RenameFileInIndex(db, OldName, NewName)
t LQTEXT Database *db; Changes the filename associated with a ¥1p, by find-

char *OldName;

‘ ing the 1D for the old filename and then replacing
char *NewName;

its filename. $ Returns: 1. zero on success 2. —I on
error g Errors: Warns if the database can’t be opened
or the file isn’t indexed.

API int Stores the given t_FileInfo struc¢ture in the database
LQT_SaveFilelnfo(db, FileInfo) referred to by the given db argument, whence it can
t LQTEXT Database *db; be retrieved by rip or by filename. §Returns:
t_FileInfo *FileInfo; . .
1. zero on success 2. —1 if error § Errors: Warns if the
database can’t be opened or written to. 8 See Also:
LQT ReMovEFILEINFOFROMINDEXY (above); LQT DesTROYFILEINFO* (p. 35).

LQT_DestroyFileInfo Database/Documents, Memory, p. 35

LQT_NameToFID Database/Retrieval, Database/Docu-
ments, p. 14

LQT_RemoveFileInfoFromIndex Database/Update, Data-
base/Documents, p. 52

API void
LQT_SetLastBlockInChain(db, WID, Offsetp, FirstUnusedBytep, theBlock)
t LQTEXT Database *db;
t WID WID;
unsigned long *Offsetp; /* In: lagt offset */
unsigned char *FirétUnusedBytep;
unsigned char *theBlock;

LQT SeTLAsTBLOCKINCHAIN maintains the chainend file in the database directory; this
contains the block number of the last block in the chain used to store data for a given
wiD. This allows lgaddfile to update an entry efficiently, as otherwise it has to read the
entire chain from the start to determine the last block before it can start appending to it.
Failing to call this function after changing the last block number for a given wip will
result in a corrupt database. §[The given Offsetp is a pointer to a long, although the value
is not changed; this is simply for consistency with other routines, and may change in the
future. The FirstUnusedBytepp is currently used only for debugging; the value is recom-
puted from the data when it is used. § Errors: Fatal error if the cache file can’t be created,
if it isn’t already open. $ See Also: LQTe FLusuLastBLockCacHEF (overleaf); LQT Last-
BLocKINCHAINT (p. 50).

API void
LQT_SortWordPlaces(db, NumberOfWordPlaces, WordPlaces)
t LQTEXT Database *db; Sorts the given WordPlace array using Quicker Sort

unsigned long NumberOfWordPlaces; ¢ the in-memory $top ligt, to be ignored by LQT -
t WordPlace *WordPlaces;)
ReaDWORD. A WordPlace array must be sorted in
ascending order by r1p, then by Block In File, then
by Word Within Block, in order to be written to the database. Since this is exaétly the
order generated by reading files one at a time from beginning to end, this routine is not
currently used. 3 Notes: Buggy, I think.

API void

LQT_UpdateWIDMatchCount(db, WID, AddedThese)
t LQTEXT Database *db; Revises the count of the number of occurrences of
tWID WID; the given word held in the WIDindex file. It is the

unsigned long AddedThese; caller’s responsibility to ensure that this number is

the same as the number of matches that are stored
with LQT WriTEWorDPLACES before the next call to LQT GETWorDPrLACES. In particu-
lar, reducing the number of occurrences with this call will not cause word places to be
deleted; a fatal (E_BUG) error will generally be produced on trying to read back a word
with an inconsistent Match Count. g Errors: It's a fatal error (B BUG) if the wip isn’t in

LQT_LastBlockInChain Database/Update, Database/Files, LQTp_FlushLastBlockCache Database/Update, Data-
p. 50 base/Files, p. 54

Database/Update,
Database/Files
../liblgtext/lastblk.c

Database/Update,
Database/Words
../liblqtext/lgsort.c

Database/Update,
Database/Words
../liblgtext/wordinfo.c

Database/Update,
Database/Words
../liblgtext/wordinfo.c

Database/Update,
Database/Physical
../liblgtext/wpblock.c

Database/Update,
Database/Physical
../liblgtext/wpblock.c

Database/Update,
Database/Files
../liblgtext/lastblk.c

the index.

API t WID

LQT_WriteWord AndWID(db, Word, Length, WID)
t LQTEXT Database *db; Saves the wip — Word mapping in the wordlist
Fha; NWO}rld3 database. § Returns: the given wip. § Errors: Fatal
int Length; . , .
¢ WID WID: error if the database can’t be opened, or if the word

couldn’t be stored. § Notes: The reverse map, Word
— WID, is performed using LQT WIDToWoRrD, and uses the copy of the word stored in
the widindex block header. § See Also: LQT WIDToWorp* (p. 15); LQT WorDToWID?
(p. 16); LQT PurWorDpINEOINTOINDEXY (p. 52).

API unsigned long Writes the given WordPlaces to disk. [The given
LQT_WriteWordPlaces(LastStart argument should be zero if the given
db, Block pointer refers to data that is not to be stored in
x‘;gﬂ)laces’ the overflow file (‘data’). This will be the case when
LadtSta i, the first few matches are to be written into the
Block, DataStart, BlockLength, widindex entry. If the LastStart argument is non-
NextOffset, NextSize, zero, it is the block number that will be passed as an
NumberToWrite) argument to LQT WriTEBLOCK to save the block
t LQTEXT Database *db; when itis full. § The given NextOffset can either be

t WordPlace *WordPlaces;
t WID WID;

unsigned long LastStart;
unsigned char *Block;

zero or it can be the block offset in the data overflow
file of a block that has been allocated using LQT -
FINDFREEBLOCK; in the latter case, the NextLength

unsigned char *DataStart; argument is also passed on to LQT -
unsigned int BlockLength; WRITEWORDPLACES. $ Returns: 1. the number of
unsigned long NextOffset; words added on success; 2. —1 if the file couldn’t be

unsigned long NextSize;

:) opened. 8 Notes: This routine is fairly low-level,and
unsigned long NumberToWrite;

is made available in the ar1 for efficiency. You
should not attempt to use it without looking at
examples in the lg-text clients that update the database, and also reading the source of the
function itself. § Errors: Warns if the file can’t be opened.

API unsigned long
LQT_Writepblock(db, WordInfo, pblock)

t LQTEXT Database *db; Write out an entire (presumably new) data entry,
t WordInfo *WordInfo; and return a disk pointer to the $tart of the chain.
t pblock “pblocl $ Returns: the byte offset of the first block in the
newly created chain 8 Errors: Fatal (E_BUG) error

on format or consistency check, etc.

LIBRARY int Ensures that all entries in the last block cache are
LQTp_FlushLastBlockCache(db) written out to disk. This routine must be called
t LQTEXT Database *db; before a routine that has updated the database exits.

([This routine is registered as an action to be per-
formed on a database close or sync, and so is called automatically by LQT CroseDaTABASE
and LQT SyncDATaBAsE; the ignored argument and the return value are for compatibility
with LQT AppActionONCrose. 8 Errors: Warns if there are system problems writing
the data or closing the associated file. $ See Also: LQT SETLasTBLOCKINCHAIN (previous
page); LQT_LasTBLocKINCHAINT (p. 50); LQT ADDACTIONONCLOSE? (p. 3);

- o~ o~ + N

Database/Words

Functions in this category are used to manipulate and update the vocabulary part of
an lg-text index, and also deal with the low-level binary representation of lists of
matches.

The pblock structure (veferved to chiefly in this section) is defined in h/pblock.h; it
is an in-memory representation of the data stoved in one or more physical database
blocks for a given word.

The t ' WID type is a Word IDentifier: each distinét word in the vocabulary is
assigned a unique number (a C unsigned long, starting at one vather than zevo).
This number is used as an index into a fixed-record-size file, ‘widindex’. The record
contained therve Stoves the first few matches for the word, and possibly a pointer into
the overflow file, ‘data’, where the rest of the matches are stoved.

LQT Deletepblock55
LQT GetMaxWID55%
LQT WriteCurrentMaxWID56
LQT fprintWordInfo56
API void Deletes the word places for a given pblock, using Database/Words,
: Database/Update
LQT_Deletepbb;k(d}i;gleCk) LQT DeLETEWORDPLACES. [Like LQT - *Aiblatext/pheachec
t_L}%TEIi(‘:"LII))Iamk ase “ab; DELETEWORDPrACES, LQT DELETEPBLOCK does not
Lpblock pblock; remove the wip < Word mapping from the
wordlist Key Value Database, and does not zero out
the information in the widindex block. [In other words, the word is not removed from
the database vocabulary, and subsequent calls to LQT WorpToWID will return the same
wiD value as before the call to LQT DeLeTEPBLOCK.<P> % See Also: LQT GETPBLOCKY
(p. 13); LQT_DEsTROYWoORDINFO* (p. 63).
API t WID Returns the largest currently allocated wip. Database/Words
LQT_GetMaxWID (db) ../liblqtext/getwid.c

t LQTEXT Database *db;

LQT_AddActionOnClose Database/Database, p. 3 LQT_SetLastBlockInChain Database/Update, Data-

LQT_CloseDatabase Database/Database, p. 4 base/Files, p. 53

LQT_DestroyWordInfo Memory, Database/Words, p. 63 LQT_WIDToWord Database/Retrieval, Database/Words,

LQT_Getpblock Database/Retrieval, Database/Physical, p. 13 p.15

LQT_LastBlockInChain Database/Update, Database/Files, LQT_WordToWID Database/Retrieval, Database/Words,
p. 50 p. 16

LQT_PutWordInfoIntoIndex Database/Update, Data-
base/Words, p. 52

Database/Words
../liblqtext/setwid.c

Database/Words
../liblgtext/wordinfo.c

API int Writes the value of the largest allocated wip to disk.
LQT_WriteCurrentMaxWID(db) This value is cached for efficiency, so LQT -
t LQTEXT Database *db; WRITECURRENTMAXWID must be called after allo-
cating a new wip and before the program exits.
{[Since LQT WrRiTECURRENTMAXWID is registered as an action to be performed on clos-
ing or flushing a database, it will be called automatically by a call to either LQT CrosE or
LQT Sync. {[The ignored argument is required by LQT AppAcTtioNONCLOSE. % See
Also: LQT AppActioNONCrose* (p. 3); LQT CroseDataBase® (p. 4); LQT SYNCDATA-

Base* (p. 5).

API void

LQT_fprintWordInfo(db, stream, W, Caller)
t LQTEXT Database *db; Prints an AscCII representation of the given Word-
FILE *$tream;

Info pointer to the given $tdio stream. The Caller
argument is printed before each line of output, and
is usually the name of the function calling LQT -

t WordInfo *W;
char *Caller;

FPRINTWORDINFO.

LQT_AddActionOnClose Database/Database, p. 3
LQT_CloseDatabase Database/Database, p. 4
LQT_SyncDatabase Database/Database, p. 5

Language/Stemming

The idea of stemming is that you put Apple and Apples under the same heading in
the index; that is, collating them together, or conflating them.

Curvently, the Ig-text stemmer handles only plurals and possessives; a better one
would also undevstand that run and ran and running go together, for example.

The more stemming you do, the lower the precision of matches, but the higher the
recall. Since lg-text was oviginally designed for very high precision, ftemming has
not been a high priority.

Note that when matches are written to the database, the fact that Stemming was
applied is also recorded, using two bits (one for plurals and one for possessives) so that
a query for Apples doesn’t by default match Apple in the database, but a query for
Apple will match both.

The principle is that the package should not infer move precision than was used in
the query, but where higher precision was used, should take advantage of it where it
can.

LQT EndsWord 57

LQT GenerateWordFromRoot 57

LQT OnlyWithinWord 58

LQT ReduceWordToRoot 58

LQT StartsWord 59

API int Returns non-zero only if the given character ch can
LQT_EndsWord(db, ch) appear within or at the end of a word. This funétion
t LQTEXT Database *db; is normally a macro declared in the header file <wor-

int chy drules.h> but can also be defined as a C funcétion is

greater complexity is needed and the indexing
speed loss is not a concern. 8 Returns: zero or non-zero. Bugs: This routine is only sen-
sible for English. § See Also: LQT StaARTSWoRD* (p. 59); LQT ONLYWITHINWORD? (over-
leaf).

API char *
LQT_GenerateWordFromRoot(db, WordInfo, Flags)

LQT_OnlyWithinWord Language/Stemming, p. 58 LQT_StartsWord Language/Stemming, p. 59

Language/Stemming
../liblgtext/wordrule.c

Language/Stemming
../liblgtext/root.c

Language/Stemming
../liblgtext/wordrule.c

Language/Stemming
../liblqtext/root.c

t LQTEXT Database *db; LQT GENERATEWORDFROMROOT tries to generate
t Wordlnfo *WordInfo; the original word from the given flags. Sometimes
unsigned int Flags; multiple plurals reduce to the same singular, such as
brothers and brethren both being forms of brother,

and in these cases the generated word may be incorrect. Other cases include words end-
ing in the letter o, which may or may not have has an es stripped off, so that SunOS (the
operating system) is indexed as Suno, and incorrectly pluralised as Sunoes. § Returns: A
pointer to a static buffer § Bugs: Should allow per-database stemming options. 3 See Also:
LQT RepuceWorpToRoot* (below); LQT WorpToWID* (p. 16); LQT WIDToWORD?

(p. 15).

API int Returns non-zero only if the given character ch can
LQT_OnlyWithinWord(db, ch) appear within a word but not at the $tart or end, and
t LQTEXT Database *db; not repeated consecutively. For English, an apostro-
in chy phe () is normally considered to be the only such
character; it's found in wouldn'’t, can’t, and o'clock.
You could also include the hyphen if you wanted, but it turns out to be best to index
‘match-box’ as two separate words with punctuation between them, rather than as a single
word. [This function is normally a macro declared in the header file <wordrul es. h> but
can also be defined as a C function is greater complexity is needed and the indexing speed
loss is not a concern. 8 Returns: zero or non-zero. $ Bugs: This routine is only sensible for
English. §See Also: LQT StarTsWorp* (opposite).

API char *
LQT_ReduceWordToRoot(db, WordInfo)

t LQTEXT Database *db; Reduces the word in the WordInfo pointed to by its
t WordInfo *WordInfo; argument to an English root, by stripping plurals
and possessives. WordInfo — Length is modified as
necessary, and WordInfo — Flags are updated by or'ing any necessary items from <wor -
drul es. h>. The word can grow by up to two characters in length. Itis the caller’s responsi-
bility to allocate enough space. You can also use the worDROOT macro from <wor-
drules. h> which calls LQT RepuceWorbpToRoot only if it might make a change.
s Returns: A pointer to WordInfo's Word Bugs: This routine is only sensible for English.
$ See Also: LQT READWORDFROMSTRINGPOINTERY (p. 15).

LQT_ReadWordFromStringPointer Database/Retrieval,
Database/Documents, p. 15

LQT_ReduceWordToRoot Language/Stemming, p. 58

LQT_StartsWord Language/Stemming, p. 59

LQT_WIDToWord Database/Retrieval, Database/Words,
p.15

LQT_WordToWID Database/Retrieval, Database/Words,
p.16

API int Returns non-zero only if the given character ch can

LQT_StartsWord(db, ch) appear at the start of a word. This funéion is nor-
F—LQEEXT—Database “db; mally a macro declared in the header file <wor-
int ch;

drules. h> but can also be defined as a C function is
greater complexity is needed and the indexing
speed loss is not a concern. 3 Returns: zero or non-zero. Bugs: This routine is only sen-
sible for English. § See Also: LQT ENpsWorD? (p. 57); LQT ONLYWITHINWORD? (0ppo-
site).

LQT_EndsWord Language/Stemming, p. 57 LQT_OnlyWithinWord Language/Stemming, p. 58

Language/Stemming
../liblqtext/wordrule.c

Language/Stop List

It's common practice in text retrieval to omit words from the database if they occur
very often. For example, ‘and’, ‘the’ and ‘to’ don’t seem to add very much information.
However, in certain civcumstances, such as ‘The Times', or ‘Bitwise and’, the words
are suddenly of great significance.

There are three approaches to this.

First, you can say that people looking for The Times ave out of luck.

Second, you can index all of the words, and take a penalty on index size. This pen-
alty is usually from one to thirty percent of the total index size, and is usually accept-
able.

Thivdly, you could specify a list of contexts in which wovds in the $toplist ave to be
indexed anyway. Theve are three problems with this last approach. Firstly, you don’t
have enough context in a query to determine what to do about those words. Secondly,
you have to think of all the contexts in advance; if you didn’t think of ‘the Times, the
user would still be out of luck. Finally, lg-text doesn’t support this third approach
divectly, although you could modify lg-text, perhaps using the voutines in this cate-

gory.

LQT InsertCommonWord 61
LQT ReadStopList 62
LQT WordIsInStopList 62
ARGSUSED2*%/ The given word will be ignored by LQT ReEaApWorn.
API void Note that if you ignore different words on retrieval

LQT_InsertCommonWord(db, Root)
t LQTEXT Database *db;
char *Root;

than on indexing, lg-text will not be able to locate
the exa¢t text of matches, and phrase matching may
have unexpected results. You should therefore not
modify the stoplist once you have created an index. $ Bugs: The common list is shared by
all lg-text databases. There is no way to remove a word from the stoplist. See Also:
LQT ReapStorListt (overleaf); LQT WorplIsInStorList (overleaf).

LQT_ReadStopList Language/Stop List, p. 62 LQT_WordIsInStopList Language/Stop List, p. 62

Language/Stop List
../liblgtext/common.c

Language/Stop List
../liblgtext/common.c

Language/Stop List
../liblgtext/common.c

API int Reads the named file, and adds any words found in
LQT_ReadStopList(db, CommonFile) it to the in-memory stop list, to be ignored by LQT -
t LQTEXT Database *db; ReEADWORD. # Returns: 1. the number of words
CONST char *CommonFile; added on success; 2. —1 if the file couldn’t be opened.
¢ Errors: Warns if the file can’t be opened. 3 See
Also: LQT WorplIsInStorList* (below). 8 Bugs: There is no way to clear the stop list; you
can only add to it. The current implementation is inefficient if there are more than ten or
so words. § Notes: A future release may support a ‘go list’ of phrases every word of which
is to be indexed.

API int Returns 1 if the given word is in the stop list, o
LQT_WordIsInStopList(db, WordInfo) otherwise. This function is called by the LQT -
t LQTEXT Database *db; READWORD routines on each input word to deter-

t WordInfo *WordInfo; mine whether to return it. § Returns: 1. 1 if the

word is in the stop list 2. o otherwise 8 Bugs: Fir-
stCharBitMap is shared across all databases. You cannot have more than one database
open at a time anyway at the moment, so this is not yet an issue...

LQT_WordIsInStopList Language/Stop List, p. 62

Memory

Routines in this category deal with allocating and freeing memory. The routines
emaLLoc (p. 68); EReaLLoct (p. 68); carroct (p. 67); and erreE* (p. 67); rou-
tines are due to change shortly in a move to a slab allocation policy.

LQT DestroyWordInfo63
LQT MakeWordInfo63

API void

LQT_Destroy WordInfo(db, WP)
t LQTEXT Database *db;
t WordInfo *WP;

Deletes the given structure from memory, reclaim-
ing storage. This routine does not affect the data-
base. $See Also: LQT DesTrROYFILEINFOF (p. 35);
LQT DELETEWORDFROMINDEXF (p. 49);

LQT MakeWorpINEoF (below).

API t WordInfo *

LQT_MakeWordInfo(db, WID, Length, Word)

t LQTEXT Database *db;
t WID WID;

int Length;

unsigned char *Word;

Constructs a new t_ WordInfo structure containinga
malloc’d and NuL terminated copy of the given
word. The word as passed into LQT -

MakeWorpINFO need not be NUL terminated; the

Length parameter is the number of bytes in the Word string, not counting the trailing
NUL, if present. §See Also: LQT READWORDFROMSTRINGPOINTER? (p. 15); LQT DEs-
TROYWORDINFO* (above); LQT WorpToWID?* (p. 16). $ Errors: Fatal error if there isn't

enough memory

LQT_DeleteWordFromIndex Database/Update, Data- ecalloc Utilities/Memory, p. 67

base/Words, p. 49

efree Utilities/Memory, p. 67

LQT_DestroyFileInfo Database/Documents, Memory, p.35 emalloc Utilities/Memory, p. 68
LQT_DestroyWordInfo Memory, Database/Words, p. 63 erealloc Utilities/Memory, p. 68
LQT_MakeWordInfo Memory, Database/Words, p. 63

LQT_ReadWordFromStringPointer Database/Retrieval,

Database/Documents, p. 15

LQT_WordToWID Database/Retrieval, Database/Words,

p.16

Memory, Database/Words
../liblgtext/wordinfo.c

Memory, Database/Words
../liblgtext/wordinfo.c

Other/Terminal

This category contains any remaining holdovers from the libcurses eva. These func-
tions are being moved out of the main library and into the clients; it's possible that a
new library will be created to create them in time.

LQU CursesSafeSystem 65

API void runs the given string as a system command, using
LQU_CursesSafeystem(string, retvalp) system(3); the terminal modes are restored before
char *string; and after. § Restrictions: This routine should not be

int “retvalp; used and will be deleted from the next release; it is

only useful for curses-based clients, and should be
provided separately.

Other/Terminal
../liblqtext/system.c

Utilities/Memory

The funétions in this category provide wrappers around the sy§tem-provided malloc,
free and friends. The veasons for using these funétions ave as follows:

To provide consistant error messages;

to aid in porting;

To aid in debugging.

If the compile-time manife§t MALLOCTRACE is defined (for example, with
—~DMALLOCTRACE=1 as a compiler option), these routines provide tracing output to
standard ervor which can be used to detect memory leaks.

ecalloco 67
efree L L L. 67
emalloc 68
erealloc 68
char * Allocates sufficient memory to hold the given
ecalloc(What, Number, Size) Number of objects of the given Size, after taking

CONST char *What;
unsigned int Number;
unsigned int Size;

alignment constraints into account; the system-sup-
plied calloc funéion is used. {If there is not
enough memory, a fatal error is generated. The
What argument is included in any such error message, and should be a human-readable
description of the error, as an aid to help the user understand exactly what failed. A
future release of lg-text will have an improved memory allocation interface. § Errors: A
fatal (E_FATAL | EE MEMORY) error is produced if memory is exhausted. § See Also:
emarroct (overleaf); errReE (below); ERrORY (p. 23).

void Returns the memory used by an object to the sys-
efree(String) tem, using the system-provided free function. A
char *String; future release of lg-text will have an improved mem-
ory allocation interface. % Errors: A warning (E -

WARN) is produced a NULL pointer is passed as an argument.

Error Error Handling, p. 23
efree Utilities/Memory, p. 67
emalloc Utilities/Memory, p. 68

Utilities/Memory
../liblqutil/malloc.c

Utilities/Memory
../liblqutil/malloc.c

Utilities/Memory ~ char * Allocates the given number of bytes of memory and
+/liblquil/malloce emalloc(What, nbytes) returns a pointer to it, using the system-supplied
CONST char *What; malloc funétion. [If there is not enough memory,a
unsigned nbytes; fatal error is generated. The What argument is
included in any such error message, and should be a
human-readable description of the error, as an aid to help the user understand exactly
what failed. [A future release of lg-text will have an improved memory allocation inter-
face. 8 Errors: A fatal (B_FATAL| E_ZMEMORY) error is produced if memory is exhausted.
3 See Also: ecarroct (previous page); EFReE* (previous page); ERRORF (p. 23).

Utilities/Memory ~ char * Changes the size of the given Objec, either by
+/liblqueil/malloce erealloc(Object, NewSize) extending the area of memory allocated to it or by
char *Object; allocating a new area, copying the data and freeing

unsigned int NewSize; the original storage area. {[If insufficient memory

is available, a fatal (E_FATAL) error is produced,
which includes the given What argument as a textual (human-readable) description of
the obje¢t. [The system-supplied realloc function is used. § Returns: A pointer to the
newly sized object; in most implementations this will almost always be a new copy of the
object. A future release of lg-text will have an improved memory allocation interface.
¢ Errors: A fatal (E_FATAL | EEMEMORY) error is produced if memory is exhausted.
$ See Also: Emarroc (above); eFreE* (previous page); ERror (p. 23).

Error Error Handling, p. 23
ecalloc Utilities/Memory, p. 67
efree Utilities/Memory, p. 67
emalloc Utilities/Memory, p. 68

Utilities/System

Interactions with the operating environment, such as fetching a usev’s login divectory,
are listed heve. In general, Ig-text has minimal involvement with the operating sys-
tem apart from memory allocation and the file system, so there is not much in this
category.

LQU GetLoginDirectory 69
API char * Determines the home directory of the current user.
LQU_GetLoginDirectory() It returns the value of the environment variable

$uome if it is set. If this isn't set, or is empty, or
does not point to a directory, the password file (or Yellow pages) is consulted instead.
$ Returns: The directory name in a malloc’s string; it is the caller’s responsibility to free
this string if it should no longer be needed. If the home directory cannot be determined,
a NULL pointer is returned; this might happen if the user’s entry in /etc/passwd was
removed while the program was running, or if the Yellow Pages (N1s) service became una-
vailable.

Utilities/System
../liblqutil/homedir.c

Utilities/Files

The routines in this category ave genervally wrappers around Unix sy§tem or library
calls, or are useful routines for file handling.

The wrapper routines exist so that helpful and precise ervor messages can be gen-
erated in failure cases.

The other voutines ave for items such as determining whether a filename refers to
a file or a divectory, reading a file into memory a line at a time, or determining
whether a file is empty.

As with all of the Utilities categories, none of these voutines ave specific to the
Ig-text database in any way, but they ave all used by lg-text.

LQUElseek 71
LQUEopeno 72
LQUEread 72
LQUIsDir 73
LQUIsFile 73
LQU IsNonEmptyFile 73
LQUReadFile 73
LQU StealReadLineBuffer 74
LQUfEcloseo 75
LQU fEopen 75
LQU fReadFile 75
LQU fReadLine 76
API off t
LQU_Elseek(Severity, Name, What, fd, Position, Whence)
int Severity; This is a wrapper for the Iseek(2) system call. On an

CONST char *Name;

error, the given Name (which should refle¢t the cor-
CONST char *What;

it £ responding file name, but need not be suitable to
long Position; access that file) and What, which should be a terse
int Whence; description of the way in which the program is
using the file, are used to construc¢t a message passed
to Error with the given Severity. { The fd, Position and Whence arguments are as for the
Iseek(2) system call. g Returns: The new file offset on success, or —1 on failure. 8 Errors:
Generates an Error at the given Severity if Iseek fails, adding (with bitwise or) E_SYS if
appropriate.
$ Example:
Where = LQU_rseek(E_FATAL, "passwd", "user database”, 0,0L, SEEK_SET);

Utilities/Files
../liblqutil/elseek.c

Utilities/Files
../liblqutil/fEopen.c

Utilities/Files
../liblqutil/eread.c

API int
LQU_Eopen(Severity, Name, What, Flags, Modes)
int Severity; Opens the named file with the given Flags and
CONST char *Name; Modes, as per open(2). If the open fails, an error is
CONST char *What;
. generated with the given severity, and including
int Flags; ..
int Modes: both the file name (Name) and description (What).
A diagnosis of the problem is also generated, using
errno and examining the filename to determine if (for example) a component of the given
path was not a direc¢tory. This generally produces much more specific,and hence, clearer,
error messages than using perror(3) would give. 8 Returns: a valid file descriptor on suc-
cess, or —1 if the file couldn’t be opened. If E_FATAL was given, LQU Eoren does not
return after an error.
$ Example:
* LQU_Eoren(E_FATAL, "foo.c", "input C source", O_RDONLY, 0)

API int
LQU_Eread(Severity, Name, What, fd, Buffer, ByteCount)
int Severity; This routine provides an error-checking wrapper

CONST char *Name;

‘ around the read(2) system call. If the underlying
CONST char *What;

read() returns -1, a diagnostic message is printed

int fd; o
Zr}lltar “Buffer: using by calling Error at the given Severity (bitwise
int ByteCount; or'd with E_SYS if appropriate). The message

includes What, which should be a short, succinct
summary of the purpose of the file, and Name, which is normally given as the name of
the file, but could be any string. 3 Returns: the number of bytes read on success, or —1 on
an error. If E_FATAL was given, LQU EreaDp does not return after an error.

$ Example:
nBytesRead = LQU_Erean(E_FATAL, "passwd", "list of users", o, p, 12);

$ Notes: There are several error flags, such as BE_BUG, that include E_FATAL. See
<error.h> for the current list. §{ The example does not need to check to see whether
nBytesRead is less than o, since in that case the program would exit. LQU ErEaD can,
however, return a number other than ByteCount, just as the underlying system call
read(2) can, and in the same circumstances. The caller of LQU Ereap should therefore
check that the expected number of bytes were returned.

API int returns 1 if and only if the given path is a directory.
LQU_IsDir(Dir) See the description for stat(2) for more details.
CONST char *Dir; ¢ Errors: A fatal error is issued if LQU IsDir is called

with a null §tring; a warning is issued if the string is
of length zero.

API int Determines whether the given Path refers to a regu-
LQU_IsFile(Path) lar file. Devices (such as /dev/null or a terminal),
CONST char *Path; and directories in particular are not regular files.
The Unix command { find filename -type f -print
[will print out filename if and only if LQU IsFire would return 1 for the same filename.
8 Returns: 1. 1 if the given Path represents a regular file 2. zero otherwise Notes: There is
tracing in here so that you can see which files are being investigated by the calling pro-
gram; tracing is available if the liblqutil library was compiled with -pAsciITRACE; if S0,
you can set the FindFile trace flag (LQTrACE_FINDFILE) to see tracing for this routine. The
-t "FindFilelVerbose" command-line option will do this. On systems that have the trace,
$trace or truss utility, investigate using that instead.

API int Determines whether the given Path names a regular
LQU_IsNonEnjptyFile(Path) file that contains data. In other words, the file must
CONST char *Path; have the its stat §t mode’s S IFMT field set to S -

IFREG, and must also have a non-zero st size field;
see the $tat(2) man page. 8 Returns: Non-zero if and only if Path names a regular file of
non-zero length § Notes: There is tracing in here so that you can see which files are being
investigated by the calling program,; tracing is available if the liblqutil library was com-
piled with -pDAscIITRACE; if 50, you can set the FindFile trace flag (LQTRACE_FINDFILE) to
see tracing for this routine. The -t "FindFilelVerbose" command-line option will do this.
[On systems that have the trace, strace or truss utility, investigate using that instead.
s See Also: LQU IsFire* (above); LQU IsDir* (above).

API long

LQU_ReadFile(Severity, Name, What, Lines, Flags)
int Severity; Reads the file named by the Name argument, and
CONST char *Name; returns a pointer to an array of pointers to the start
CONST char *What; of each line in the file. [The Flags argument is any

char ***Lines;

int Flags combination of flags from <l qutil.h> combined

with bitwise or; in practice, however, LQqur_NORMAL
is the most frequently used flag, which is a bitwise or of all of the flags described below.

LQU_IsDir Utilities/Files, p. 73 LQU_IsFile Utilities/Files, p. 73

Utilities/Files
../liblqutil/isdir.c

Utilities/Files
../liblqutil/isfile.c

Utilities/Files
../liblqutil/isnzfile.c

Utilities/Files
../liblqutil/readfile.c

Utilities/Files
../liblqutil/freadln.c

[The flags are as follows: 1. LQUE_IGNBLANKS to throw away blank lines; 2. LQuE -
1GNsPAcEs to discard leading and trailing spaces; 3. LQuEe_1eNHAsH to discard leading
comments (# with a hash-sign); 4. LQur_1eNALLHASH to discard comments (# with a hash-
sign); 5. LQUF_EscAPEOK to accept \# and \\ as # and \, [Thisis the file descriptor version
of LQU_rReaDFILE. { In the event of an error, the given Severity argument is passed to
Error, along with the given What argument, which should be a brief English description,
perhaps of the order of three words long, of the file. $ Returns: the number of lines read, if
any. The char ** pointed to by the Lines argument is set to point to an array of strings,
each containing one line of text, NUL-terminated with trailing newlines removed. If E -
FATAL was given, LQU_rReaDFILE does not return after an error.

$ Example:

int numberOfLines;
char **theLines;
inti;

numberOfLines = LQU_rReapFrLe(E_FATAL,
"julian.txt",
"Book of Meditations",
&theLines,
LQUF_NORMAL

5

for (i = 0;i < numberOfLines; i++) {
printf("Line %d was: %s\n", 1, Lines[i]);
efree(Lines[i]);

}

efree((char *) Lines);
s Errors: Generates a Warning or Error of the given Severity if the file can’t be opened,
and attempts to diagnose the cause. $ See Also: LQU_rReapFiLe* (opposite).

API char * Returns the internal line buffer used by LQU -
LQU_StealReadLineBuffer() FREADLINE, and also causes LQU FREADLINE to

allocate a new buffer the next time it is called. In
this way, you can read lines with LQU_rREADLINE, and save any that you are interested in
keeping by calling LQU_SteatREaADLINEBUFFER, without having to copy the data. [The
buffer returned may be longer than necessary to contain the line that was last stored there
by LQU_rREADLINE by up to LQT_READLINE_SLOP bytes; use erealloc to shrink it if
desired. The LQT_READLINE_SLOP constant is defined in freadln.c as 30 bytes. $ Returns:
a pointer to the buffer, or NuLL if there isn’t one yet.

LQU_fReadFile Utilities/Files, p. 75

API void Closes the given file descriptor, printing error mes- Utilities/Files

LQU_fEclose(Severity, fp, Name, What) sages if necessary. $ Returns: There is no return -/iblautl/fEopenc
int Sezerity; value. If E_FATAL was given, LQU_rEcrosE does
f%isg? ;char Name: not return after an error.
CONST char *What;
API FILE * Utilities/Files
LQU_fEopen(Severity, Name, What, Mode) ~/liblqutil/tEopen.c
int Severity; This is the stdio equivalent of LQU EoPEN.
CONST char *Name; Returns: a freshly opened file pointer (FILE *) on
CONST char *What; .)
CONST char “Mode success, or NULL if the file couldn’t be opened. If E -
’ FATAL was given, LQU _rEoprEN does not return
after an error. § Errors: Warns if the file can’t be opened.
API long Utilities/Files
LQU_fReadFile(Severity, f, Name, What, Lines, Flags) ~/liblqutil/freadf.c
int SereritY; Reads the named file (Name), and mallocs an array
FILE *f;

of char * pointers to the start of each line read. The
CONST char “What; num})er of lines rgturned may be less than the num-
char **Lines; ber in the file, since by default LQU rReaDFILE
int Flags; ignores blank or commented lines. Comments are
denoted by a # as the first non-blank character on
the line. If the file can't be opened, memory is exhausted, LQU_ReapFire() calls Error()
with the given Severity, and with an error message constructed out of What, which
should be a short (e.g. 3-word) description of the purpose of the file. The Flags argument
can contain any of the following, combined with or (): 1. UF_1GNBLANKS to throw away
blank lines, 2. UF_tGNsPACEs to discard leading and trailing spaces, 3. UF_IGNHASH to
discard leading comments (# with a hash-sign) 4. UF_1GNALLHASH to discard comments
(# with a hash-sign) 5. UF_EscAPEOK to accept [In addition, UF_NORMAL is defined to
be UF 1GNBLANKS | UF IGNSPACES | UF IGNHASH | UE EscAPEOK and use of this in
reading files is strongly encouraged to provide a consistent file format. g Returns: 1. a
pointer to the array of lines, in Lines 2. the number of lines allocated. 3. —1 if the file
couldn’t be opened. § Errors: Warns (with the given severity | E_SYS) if the file can’t be
opened.

CONST char *Name;

Utilities/Files
../liblqutil/freadln.c

API int Reads the next input line from the given file into a
LQU_fReadLine(f, Linep, Flags) static buffer. The buffer is allocated with malloc and

E }IlLEfL’ _ resized dynamically, but is owned by LQU -
;:ma;lag;nep, FReapLINE and should not be free'd or overwritten.

[The LQU STEALREADLINEBUFEFER function can be
used to obtain the buffer; LQU rReapLine will allocate a new one the next time it is
called. [The given Flags are treated as for LQU_rReaDFILE, which currently calls this
routine directly. Note that, as for LQU_rReaDFILE, blank lines are skipped if the corre-
sponding flag is given. In this case, LQU rReapLiNE will never return a pointer to a blank
line, but will continue reading lines from the file until a non-blank one is found.
$ Returns: a pointer to the line, in Line, and also the number of bytes in the line; -1 is
returned on EOF, in which case the Line pointer should not be used.

Utilities/Name Space

A Name Space is a set of String-valued names that map into C variables. In other
words, it's a symbol table.

The main use for these is in the Igkwic client, but they ave destined for higher
things, including internationalised message support and configuration options.

A new facility, the Glue Interpreter, will be available in the next velease; this gen-
eralises the little language used by the lgkwic client, and provides something rather
like printf and scanf but with named variables (and higher efficiency). if you are
working in this avea, or would like to know morve, you should send mail to Liam
Quin (lee@sq.com) and ask him for the $tate of progress on Glue.

LQU FirétNameRef S 4

LQU_ GetDescrxpnonFromNameRef e e e oo .78

LQU GetDescriptionFromNameSpace 78

LQU GetNameFromNameRef78

LQU GetTypeFromNameRef78

LQU GetVariableFromNameRef 79

LQU NameRefFun¢tionTakesArgument 79

LQU NameRefIsValid79

LQU NameRefToString79

LQU NameRefValueToString79

LQU_ NameRerarlableAllocatedBnybrary e80

LQU NameRefVariablePointsToFunc¢tion 80

LQU NameSpaceTableToNameSpace 80

LQU NameTypeToString80

LQU NextNameRef P -5 ¢

LQU. SetNameRefFunéhonTakesArgument I -5

LQU_ SetNameRerarlableAllocatedBnybrary P 5

LQU SetNameTypeAndVariable 81

LQU SetNameValue8

LQU SetNameVariable8

LQU StringToNameRef8

API t NameRef Used in conjunction with LQU NExTNAMEREF to
LQU_FirstNameRef(NameSpace) iterate over all of the Names in a Name Space.
t NameSpace "NameSpace; s Returns: A reference to the first Name in the given

Name Space, if there are any. Use LQU -
NaMmeRErIsVarip() to determine if the returned reference is valid; if not, LQU -
NaMeREErISERROR will determine if there was an error, and LQU GETNameERROR will
handle the error using Error().
$ Example:

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

t NameRef NameRef;

for (
NameRef = LQU_FirstNaMeREr(NameSpace);
LQU NameREerIsVaLip(NameSpace, NameRef);
NameRef = LQU NextNameREF(NameSpace, NameRef)

)
now use the Name Reference:
printf("%s\n", LQU_GETNAMEFROMNAMEREF(NameRef));

* }
s See Also: LQU GerNameFroMNaMeREF? (below); LQU GETTyPEFROMNAMEREF¥

(below); LQU NaMEeREFIsVaLin* (opposite); LQU_NameRefIsError (undocumented);

API char *
LQU_GetDescriptionFromNameRef{(NameRef)
t NameRef NameRef; Returns the textual description of the variable asso-

ciated with a given NameRef, or nuLL if there is
none. {{ Where the description is available, it is intended to be presented to the user, for
example in error messages, and not to be parsed. $ Notes: The NameRef must be valid.

API char *
LQU_GetDescriptionFromNameSpace(NameSpace)
t NameSpace *NameSpace; Returns a pointer to the textual description of the

given NameSpace. The text is in private memory,
and so should not be freed by the caller.

API char *
LQU_GetNameFromNameRef(NameRef)

t NameRef NameRef; Retrieves the name of the given NameRef as a
string. The NameRef must be valid. 8 Returns: A
pointer to the name; you should not free this string. § See Also: LQU NaAMEREFISVALID*

(opposite).

API t NameType
LQU_GetTypeFromNameRef(NameRef)

t NameRef NameRef; Returns the type of the variable associated with the
given NameRef. [The types are defined in
<namespace.h> as an enumerated type. $ Notes: The NameRef must be valid.

LQU_GetNameFromNameRef Utilities/Name Space, p. 78
LQU_GetTypeFromNameRef Utilities/Name Space, p. 78
LQU_NameRefIsValid Utilities/Name Space, p. 79

API void *
LQU_GetVariableFromNameRef(NameRef)

Returns a pointer to the variable associated with a
given NameRef. [You have to cast the result of this funé¢tion, perhaps using LQU -
GeTTyPEFROMNAMEREF and a switch, since C lacks runtime type information. 8 Notes:
The NameRef must be valid.

API int
LQU_NameRefFunctionTakesArgument(NameRef)
t NameRef NameRef; Returns non-zero if the function pointer associated

with the given Name Ref is a pointer to a function
that takes an argument. Before calling this function (or macro), you should check that
LQU NAMEREFVARIABLEPOINTSTOFUNCTION returns non-zero for the given NameRef.
¢ Notes: The NameRef must be valid.

API int
LQU_NameReflIsValid(NameSpace, NameRef)
t NameSpace “NameSpace; Determines whether the given NameRef is a valid

t NameRef NameRef; reference to a name in the given NameSpace. { A

NameRef is invalid if it is a NULL pointer, or if the
Name to which it refers has been deleted from the NameSpace. § Notes: This function
does <E>not</E> check to see whether a NameRef has been corrupted; the given Nam-
eRef must either be NuLL, or have previously been a valid NameRef in the given
NameSpace. 3 Returns: Non-zero if the NameRef is valid, and zero otherwise. 3 See Also:
LQU _STRINCTONAMEREE? (p. 82); LQU_SETNAMEVARIABLE? (p. 82).

API char * Converts the value pointed to by the variable associ-
LQU_NameRefToString(NameRef) ated with the given Name Reference into a string,
t NameRef NameRef; s Returns: a dynamically allocated string, which the
caller must free. § See Also:
LQU _NaMEREFVALUETOSTRING (below); LQU SETNAMETYPEANDVARIABLE (p. 81);
LQU_GeTNaAMEFROMNAMEREEF (opposite); LQU_GETVARIABLEFROMNAMEREE* (above).

API char *
LQU_NameRefValueToString(NameRef)

t NameRef NameRef; Converts the value pointed to by the variable associ-
ated with the given Name Reference into a §tring.
$ Returns: a dynamically allocated $tring, which the caller must free. §See Also:

LQU_GetNameFromNameRef Utilities/Name Space, p. 78
LQU_GetVariableFromNameRef Utilities/Name Space,
p-79
LQU_NameRefValueToString Utilities/Name Space, p. 79
LQU_SetNameTypeAndVariable Utilities/Name Space,
p. 81
LQU_SetNameVariable Utilities/Name Space, p. 82
LQU_StringToNameRef Utilities/Name Space, p. 82

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

LQU_SETNAMETYPEANDVARIABLEF (p. 81); LQU_GETNAMEFROMNAMEREEF* (p. 78);
LQU GeTVaRIABLEFROMNAMEREF (previous page).

API int
LQU_NameRefVariableAllocatedByLibrary(NameRef)
t NameRef NameRef; Determines whether the variable associated with

the given NameRef was allocated automatically
(and is anonymous), or whether it was allocated externally and supplied to on of the
Name Space creation functions. 8 Notes: The NameRef must be valid.

API int
LQU_NameRefVariablePointsToFunction(NameRef)
t NameRef NameRef; Returns non-zero if the variable associated with the

given NameRef has previously been marked a
pointer to a function, for example with LQU_SETNAMEREFVARIABLEPOINTSTOFUNCTION.
 Notes: The NameRef must be valid.

API t NameSpace *
LQU_NameSpaceTableToNameSpace(Name, theTable)
char *Name; Converts a Name Space Table into a Name Space.
t NameSpaceTable theTable; This is useful if you have a statically initialised
Name Space Table, for example. The new Name
Space has the given Name as its name. The $tring is pointed to but not copied, and should
therefore be allocated by the caller if it is not static data. The entries in the Name Space
Table are copied, but their Name fields are simply pointed to. 8 Returns: the newly
created Name Space if successful. Currently, a failure is always fatal. §See Also:
LQU _STRINCTONAMEREE? (p. 82); LQU_SETNAMEVARIABLE? (p. 82).

API char *
LQU_NameRefTypeToString(NameType)
t NameType NameType; Returns a string representation of the given Name-
Type. 3 Returns: A statically allocated string, which
need not be freed. $See Also: LQU SETNAMETYPEANDVARIABLE? (Opposite); LQU_GET-
NaMEFROMNAMEREEF* (p. 78).

LQU_GetNameFromNameRef Utilities/Name Space, p. 78
LQU_GetVariableFromNameRef Utilities/Name Space,
p-79
LQU_SetNameTypeAndVariable Utilities/Name Space,
p. 81
LQU_SetNameVariable Utilities/Name Space, p. 82
LQU_StringToNameRef Utilities/Name Space, p. 82

API t NameRef
LQU_NextNameRef(NameSpace, NameRef)

t NameSpace *NameSpace; Used in conjunction with LQU NEXTNAMEREF to
t NameRef NameRef; iterate over all of the Names in a Name Space.
s Returns: A reference to the first Name in the given
Name Space, if there are any. Use LQU NaMmeREFIsVALID() to determine if the returned
reference is valid; if not, LQU NameREErIsErRrOR will determine if there was an error, and
LQU_GetNaMmeERROR will handle the error using Error(). § See Also: LQU_GET-
NaMEFROMNAMEREFF (p. 78); LQU_GETTYPEFROMNAMEREFF (p. 78); LQU NAMERE-
FIsVaLin* (p. 79); LQU NameRefIsError (undocumented);

API void
LQU_SetNameRefFunctionTakesArgument(NameRef)
t NameRef NameRef; Stores within the NameRef the fa¢t that the variable

associated with it is a pointer to a function that takes
an argument. The NameRef must previously have been marked as being associated with
a function pointer using LQU_SETNAMEREFVARIABLEPOINTSToOFUNCTION. § Notes: The
NameRef must be valid.

API int
LQU_SetNameRefVariableAllocatedByLibrary(NameRef)
t NameRef NameRef; Stores within the NameRef the fact that the variable

associated with it is a piece of dynamically allocated
memory internal to the Name Space library. $ Notes: The NameRef must be valid. [This
function should not be used by client software.

API void
LQU_SetNameRefVariablePointsToFunction(NameRef)
t NameRef NameRef; Stores within the NameRef the fact that the variable
associated with it is a pointer to a function. § Notes:
The NameRef must be valid.

API t NameRef
LQU_SetNameTypeAndVariable(theNameRef, theNameType, theVariable)

t NameRef theNameRef; Associates the given NameRef with the given Vari-
t NameType theNameType; able, first changing the remembered type of the
void *theVariable; NameRef. You should pass a pointer to the variable
you want to use. The variable itself should be static

if there is any chance of the Name within the NameSpace being used after the variable

LQU_GetNameFromNameRef Utilities/Name Space, p. 78
LQU_GetTypeFromNameRef Utilities/Name Space, p. 78
LQU_NameRefIsValid Utilities/Name Space, p. 79

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

Utilities/Name Space
../liblqutil/namespace.c

has gone out of scope. 3 Returns: The given NameRef, possibly changed, is returned.
$ Example:

static int MyToes = 10;

LQU SeTNaMEeTYPEANDVARIABLE(NameRef, LQU _NameType_Integer, &MyToes);
% See Also: LQU SETNaMEVARIABLEF (below).

API t NameRef Sets the value of the variable associated with the
LQU_SetNameValue(NameRef, Value) given NameRef. § Returns: the given NameRef.
t NameRef NameRef; s See Also: LQU SeTNameVariasLe? (below);
void *Value;

LQU_SETNAMETYPEANDVARIABLEF (previous page).

API t NameRef
LQU_SetNameVariable(NameRef, Variable)

t NameRef NameRef; Associates a variable with a Name that you have
void *Variable; retrieved from a Name Space. You should pass a
pointer to the variable, which must remain in scope
for as long as the Name can be accessed. § Returns: the given Name Reference. § See
Also: LQU_SETNAMETYPEANDVARIABLEF (previous page); LQU STRINGTONAMEREF
(below).

API t NameRef
LQU_StringToNameRef(theNameSpace, theName)

t NameSpace *theNameSpace; Treats the given ‘theName' string as a Name, and

char *theName; looks this up in the given NameSpace. If the

NameSpace allows nested NameSpace references,

the Name is allowed to have any number of prefixes consisting of a name followed by a
dot; the name must be the name of a NameSpace in the NameSpace being searched, and
in this case the search proceeds using the newly found NameSpace on the rest of the
string. 3 Returns: the NameRef, or NULL
$ Example:

If given the string ‘Children.Boys.Simon’,and a NameSpace called

‘People’, LQU_StriNGToNaMEREF will search ‘People’ for a NameSpace

called Children, and if that should succeed, it will then search

‘Children’ for a NameSpace called ‘Boys'.

If this last search succeeds, the namespace ‘Boys’is searched

for ‘Simon’, and the result, either the NameRef called ‘Simon’ or

NULL for failure, is returned.
3 See Also: LQU_SETNAMETYPEANDVARIABLEF (previous page); LQU_GETVARIABLEFROM-
NaMEeREF* (p. 79).

LQU_GetVariableFromNameRef Utilities/Name Space,
P79

LQU_SetNameTypeAndVariable Utilities/Name Space,
p. 81

LQU_SetNameVariable Utilities/Name Space, p. 82

LQU_StringToNameRef Utilities/Name Space, p. 82

Utilities/Numeric Range

This category provides some routines for maniplating an Ascrr representation of
numeric vanges, and corresponding in-memory data Structures. It's useful for such
things as lists of pages to print (5,12-20,37-), and is used by some of the lg-text clients
to determine which matches to process.

LQU LargerThanRangeTop83
LQU NumberWithinRange83
LQU StringloRange83
API int Use for efficiency, to determine whether a given

LQU_LargerThanRangeTop(n, Range) number is larger than the largest value accepted by
CONST intn; the given range. Passing a range that ended with a
CONST t_Range *Range; hvph .

yphen (for example, 1,2,5-7,12-) will always pro-

duce a zero result, even if n falls within a ‘hole’ in the

range, as for 4, 8, 9, 10 and 11 in the example here. 3 Returns: 1. 0 if the number is not
entirely beyond the given range 2. 1 otherwise $See Also: LQU STRINGTORANGE?

(below); LQU NuMmBERWITHINRANGE ¥ (below).

API int Determine whether a given number, n, falls within

LQU_NumberWithinRange(n, Range) a3 given range. A range is a list like ‘~4,12-30,40,100-,

CONST intn; to match § 1, 2, 3, 4, 12, 13...29, 30, 40, 100, 101, 102,

CONST t Range "Range; ... A space can be used instead of a comma. The

range generates the range ‘~1,2-, matching all num-

bers 3 Returns: 1. 1 if the n is within (matched by) the given range 2. o otherwise § See
Also: LQU StrincToRance? (below); LQU LarcErRTHANRANGETOR (above).

API t Range * Converts the given string to a range; integers can
LQU_StringToRange(String) subsequently be matched against the range with
CONST char *String; LQU NUMBERWITHINRANGE. $ Returns: 1. a
pointer to a range on success 2. 0 otherwise $ Errors:
A null string argument produces a fatal error. Syntax errors are also fatal. 3 See Also:
LQU LarcerRTHANRANGETOPF (above); LQU NuMBERWITHINRANGE (above).

LQU_LargerThanRangeTop Utilities/Numeric Range, p. 83

LQU_NumberWithinRange Utilities/Numeric Range, p. 83
LQU_StringToRange Utilities/Numeric Range, p. 83

Utilities/Numeric Range
../liblqutil/range.c

Utilities/Numeric Range
../liblqutil/range.c

Utilities/Numeric Range
../liblqutil/range.c

Utilities/Strings

The voutines in this category are for general string handling; in addition, <gl o-
bal s. h> contains definitions for STREQ and STRNCMP, after an idea by Henry
Spencer; these are not curvently documented here.

The joinstr routines are for joining two or three strings together to make a single
longer one; these ave useful for constructing full pathnames out of a divectory and a
filename.

LQU DownCase85
LQU ReverseString85
LQU StringContainedIn86
LQUcknatstr86
LQUgcstring86
LQUjoinstr287
LQUjoinstrs87
API char * Returns a pointer to a static buffer containing a copy
LQU_DownCase(String) of the given string in which all upper-case charac-

CONST char *String; ters have been converted to lower case. The buffer

grows automatically, and requires that the given
String be nul-terminated. $ Notes: Relies on correct support from isupper, as described in
¢type(3). On some systems, this function returns garbage if a character with the top bit
set is tested, and LocALE has not been set. Bugs: The argument is not checked to see if it
is a NULL pointer.

API char * Reverses the bytes in the given string; if ‘type’ is
LQU_ReverseString(start, end, type) even, the individual whitespace-delimited words are
char *start;

reversed in place; if type is even, he entire string is
reveresed. The process is repeated with (type - 1)
until type is zero. Hence, a reverse type of zero does
nothing, and a reverse type of one reverses the string in place; a reverse type of 2 will
reverse the order of the words in the string; a reverse type of 3 is the same as a reverse type
of one, and a reverse type of 4 leaves the string in place. Values greater than two are thus
pointless, but are allowed for convenience. 8 Returns: the given $tart pointer; the string is
reversed in place. § Notes: The string must be in read-write memory; to reverse a string
that was a manifest constant at compile time, you must first copy it into a dynamically
allocated buffer. §[This funétion is used by lgkwic, which contains some examples.

char *end;
int type;

Utilities/Strings
../liblqutil/downcase.c

Utilities/Strings
../liblqutil/revétr.c

Utilities/Strings
../liblqutil/$trings.c

Utilities/Strings
../liblqutil/cknatstr.c

Utilities/Strings
../liblqutil/cstring.c

8 Errors: An internal error (always fatal) is produced if either start or end is a null pointer,
or if end < start (implying a string of negative length), or if the type argument is outside
the range from zero to eight inclusive.

API int
LQU_StringContainedIn(ShortString, LongString)

CONST char *ShortString; Determines whether the given ShortString is con-

CONST char *LongString; tained anywhere in the LongString, and, if so,

returns non-zero. s Returns: 1. 1 if the shorter

string is contained in the longer, or if the strings are equal, of if ShortString is of length

zero 2. 0 otherwise g Notes: See strstr for a more efficient way to do this. Some Unix sys-
tems do not have strétr, though.

API int Checks whether the given $tring argument repre-
LQU_cknatstr(str) sents a natural number; that is, an optional plus or
CONST char *str; minus sign followed by one or more decimal digits.
Leading whitespace, as reported by the isspace
macro, is ignored, but no trailing whitespace is allowed. 8 Returns: Zero if the match fails,
and one if it succeeds. 8 Bugs: 1. Should return a pointer to the first implausible character.
2. Should probably allow trailing whitespace. 3. Does not check its argument for a NULL
pointer.

API char * Converts any C escape sequences in the given
LQU_cstring(theString) $tring, and returns the result in a freshly malloc'd
CONST char “theString copy. The escape sequences currently recognised
are \a (audible alert), \e (escape), \n (newline), \t
(tab), \b (backspace), \r (return), \f (form feed), \\ (backslash), \’ (single quote) and \"
(double quote). The vertical tab (\v) is converted into a newline. The o¢tal \ddd notation
is understood; there can be up to three octal digits after the backslash. If you need to fol-
low an o¢tal escape with an ascir digit, you should use all three digits, with leading zeros
if necessary. The anst C \xDD hexadecimal notation is not supported. 3 Returns: A
pointer to a freshly allocated buffer; it is the caller’s responsibility to free this. If a null
pointer was passed as an argument, however, a null pointer is returned. § Errors: Warns if
an unrecognised escape sequence or trigraph was found 3 Bugs: Has support neither for
hexadecimal escapes (\xDD) nor for trigraphs (perhaps this is a feature). There is no way
to include Asci1 Nur (\ooo) into a string, as this terminates it.

API char * Returns a $tring consisting of the concatenation of utilities/Strings

LQU_joinstr2(s1, s2) the two given strings. The result is freshly mallocd, -/iPlaudl/jeinstrac
CONST char *s1, *s2; and it is the caller’s responsibility to free this stor-
age. Null strings are treated as if they were empty
strings. 8 Returns: The concatenation of the three given arguments. g Errors: Fatal error
if memory is exhausted. $ Bugs: The name is a little odd.
$ Example:
char *theFile = LQU jornstr2(dire¢toryName, "/fileName");
% See Also: LQU joinstr3 ¥ (below).
API char * Returns a $tring consisting of the concatenation of utilities/Strings
LQU_joinstr3(s1, 52, 53) the three given $trings. The result is freshly mal- -/iPlauil/jeinstre
CONST char *s1, *s2, *s3; loc'd, and it is the caller’s responsibility to free this

storage. Null strings are treated as if they were
empty strings. $ Returns: The concatenation of the three given arguments. § Errors:
Fatal error if memory is exhausted. $ Bugs: The name is a little odd.

$ Example:
char *theFile = LQU jornstr3(directoryName, "/", fileName);

LQU_joinstr3 Utilities/Strings, p. 87

