
Overview

From the perspe·ive of a programmer, lq-text is made up of several libraries:
1. liblqtext is the main text retrieval library; 2. liblqutil defines a number of useful
general routines, mo‚ly for file and ‚ring manuipulation, and 3. liblqerror deals
with error handling.

You’ll probably end up using a mixture of these libraries in pra·ice. If you link
again‚ liblqtext you will also need to link again‚ the other libraries; if you link
again‚ liblqutil you will need to link again‚ liblqerror, but you can use liblqutil
without liblqtext. In the same way, liblqerror ‚ands alone and can be used without
any of the other libraries.

You will therefore need to link with the options ‘-llqtext’ ‘-llqutil’ ‘-llqerror’ in that
order. You may also need to use ‘-L’ to specify the dire·ory containing the libraries,
depending on your in‚allation, and ‘-I’ to name the dire·ory with the include files.
The default places are ‘/usr/local/lib/lqtext’ and ‘/usr/local/lib/lqtext/include’ for
these, respe·ively.

The fun·ions in each library all have a common prefix, ‚arting with lq, as fol-
lows: 1. lqt is used by text retrieval routines; 2. lqu is used by liblqutil routines;
3. lqm is used for a number of memory-related routines; 4. lqe is used for error
handling routines.

Since e‹ciency is a major part of text retrieval, some of the routines documented
here are a·ually implemented as macros. It is deliberately unspecified as to which
these are, so that you can’t rely on the implementation. You mu‚ therefore avoid
having side-e⁄e·s in parameters to fun·ion calls, as any parameter may be
evaluated multiple times.

Some of the routines have an ‘_’ after their prefix, and some have a ‘p’ in‚ead; the
‘p’ is a reminder that the routine concerned is private to the lqtext libraries, and shold
not normally be used in client software.

To make them easier to copy and use in other programs, many of the example cli-
ents shipped with lq-text have fun·ion names that begin with lqc_ (the C ‚ands
for Client), so that they are unlikely to confli· with anything you’re already using.
The sample clients are located in the lq-text/src/lqtext dire·ory; the samples in this
manual are in the lq-text/doc/samples dire·ory.

Database .
Error_Handling
Input . 31
Language .
Memory . 63
Other .
Output . 33
Retrieval .
Tracing . 25
Utilities .

Database/Database

¶ Fun·ions in this category are related to manipulating an lq-text database as a
whole.

Usually when you are working with lq-text, you will fir‚ call LQT_InitFrom-
Argv (in the Database/Defaults category), and then pass the return value from that
as an argument to LQT_OpenDatabase; before exiting, you should normally call
LQT_CloseDatabase.

LQT_AddA·ionOnClose 3
LQT_CheckDatabaseVersion 4
LQT_CloseDatabase 4
LQT_CurrentlyHaveWriteAccess 4
LQT_ObtainReadOnlyAccess 5
LQT_ObtainWriteAccess 5
LQT_OpenDatabase 5
LQT_SyncDatabase 5

Database/Database
../liblqtext/close.c

API void
LQT_AddActionOnClose(db, Description, A·ion, Flags)

t_LQTEXT_Database *db;
char *Description;
int (* Action)(

t_LQTEXT_Database *
);
unsigned int Flags;

The given A·ion fun·ion will be called whenever
LQT_CloseDatabase or LQT_SyncDatabase is
called. ¶ The ‚ring Description is used in trace and
debugging messages, and also in error messages; it
should be a human-readable description of the
a·ion that the fun·ion is performing, or it could be

an ascii ‚ring containing the name of the fun·ion. The Description ‚ring is not
copied; a pointer to it is retained. Therefore, it is an error to free it after calling LQT_-
AddActionOnClose. ¶ The given Flags argument may be any combination of lqt_on_-
sync and lqt_on_close using bitwise or. If the lqt_on_sync flag is given, the given
A·ion is called by LQT_SyncDatabase; if lqt_on_close is given, the given A·ion is
called by LQT_CloseDatabase. It is unusual to have an a·ion for the Sync case and not
for the Close case, but it is not forbidden. ¶ You can regi‚er any number of fun·ions in
this way. The mo‚ recently regi‚ered fun·ion is called fir‚, and so on. ¶ LQT_-
OpenDatabase uses this fun·ion to regi‚er the following fun·ions, in order, so that
LQT_FlushBlockCache is called la‚: 1. LQT_FlushBlockCache (Write out cached low-
level data blocks); 2. LQT_WriteCurrentMaxWID (Write out large‚ allocated wid);
3. LQTpFlushWIDCache (Write out cachedwid index blocks); 4. LQTp_-
FlushLa‚BlockCache (Write out cached la‚block data); 5. LQT_-

SyncAndCloseAllKeyValueDatabases (Flush and close all open Dynamic Hashing
(ndbm) key-value databases) ¶ You can see these called by running a client with the
Debug trace flag set (e.g. lqwordli‚ -t Debug). Z Notes: The li‚ of fun·ions regi‚ered
may change between revisions of lq-text, and is given here for illu‚rative purposes. Z See
Also: LQT_OpenDatabase ‡ (opposite); LQT_CloseDatabase‡ (below); LQT_OpenKey-
ValueDatabase

‡ (p. 38).

Database/Database
../liblqtext/lqrverno.c

API void
LQT_CheckDatabaseVersion(db)

t_LQTEXT_Database *db;

Checks that the current database is compatible with
this version of the library. Some versions of
liblqtext may have a backwards compatibility mode,
which this fun·ion will enable. This routine is

called automatically whenever an lq-text database is opened. Z Notes: The liblqtext
library is capable of maintaining backward compatibility with earlier versions; for
example, Release 1.13 could read a database created with Release 1.12; this feature is not
presently included, however. In pra·ice, it’s almo‚ always possible to index the data
again rather than using backwards compatibility modes, and performance is usually then
better. Z Errors: Fatal error if the database is incompatible with the current version of the
lqtext library.

Database/Database
../liblqtext/close.c

API int
LQT_CloseDatabase(theDatabase)

t_LQTEXT_Database *theDatabase;

Closes the current lq-text database. Any a·ions that
have been regi‚ered with LQT_-
AddActionOnClose are performed, including the
ones that liblqtext has regi‚ered. It is not necessary

to call LQT_SyncDatabase before closing a database, as LQT_CloseDatabase does this.
All pending data is flushed, and all file descriptors that have been opened by liblqtext
fun·ions are closed. Currently, not all allocated memory is freed, but any such memory
is not lo‚, because it will be reused on a subsequent call to LQT_OpenDatabase.
Z Returns: zero. Z See Also: LQT_AddActionOnClose ‡ (previous page); LQT_OpenData-
base

‡ (opposite); LQT_SyncDatabase ‡ (opposite).

Database/Database,
Database/Files

../liblqtext/smalldb.c

API int
LQT_CurrentlyHaveWriteAccess(db)

t_LQTEXT_Database *db;

Returns non-zero if and only if the given database is
open with write access. Z Notes: Write access may
on some sy‚ems be exclusive, so that no other pro-
cess can open the database, neither for reading nor

for writing. You should not rely on this, however. Z See Also: LQT_ObtainWriteAccess‡

(opposite); LQT_OpenDatabase ‡ (opposite).

LQT_AddActionOnClose Database/Database, p. 3
LQT_CloseDatabase Database/Database, p. 4
LQT_ObtainWriteAccess Database/Database, Data-

base/Files, p. 5
LQT_OpenDatabase Database/Database, p. 5
LQT_OpenKeyValueDatabase Database/Dynamic Hashing,

Database/Files, p. 38
LQT_SyncDatabase Database/Database, p. 5

Database/Database,
Database/Files
../liblqtext/smalldb.c

API int
LQT_ObtainReadOnlyAccess(db)

t_LQTEXT_Database *db;

Obtains read-only access to the current database.
This is called automatically by LQT_OpenDatabase
if appropriate. If the database was previously open
for writing, it should be closed fir‚ with

LQT_CloseDatabase or LQT_SyncDatabase. Z Returns: 1. zero on success 2. –1 on fail-
ure or error Z Errors: A corrupt database may cause a fatal or E_BUG error. Z See Also:
LQT_OpenDatabase

‡ (below); LQT_ObtainWriteAccess‡ (below); LQT_OpenKey-
ValueDatabase

‡ (p. 38); LQT_CloseDatabase‡ (opposite).

Database/Database,
Database/Files
../liblqtext/smalldb.c

API int
LQT_ObtainWriteAccess(db)

t_LQTEXT_Database *db;

Grants write access to the current database. This is
called automatically by LQT_OpenDatabase if
appropriate. Z Returns: 1. zero on success 2. –1 on
error or failure Z Notes: Write access may on some

sy‚ems be exclusive, so that no other process can open the database, neither for reading
nor for writing. You should not rely on this, however; on some sy‚ems, multiple clients
may succeed in writing, and will corrupt the database. Z Errors: A corrupt database may
cause a fatal or E_BUG error. Z See Also: LQT_ObtainReadOnlyAccess ‡ (above);
LQT_OpenDatabase

‡ (below).

Database/Database
../liblqtext/open.c

API t_LQTEXT_Database *
LQT_OpenDatabase(Options, flags, modes)

t_lqdbOptions *Options;
int flags;
int modes;

Opens the lq-text database referred to in the given
Options obje·; flags and modes are as for open(2),
although in all cases the lq-text dire·ory mu‚
already exi‚. ¶ The only valid Options obje· at the

moment is the value returned by LQT_InitFromArgv, which can only be called once dur-
ing the lifetime of a process. Z Notes: Since you can currently only have a single database
open in any given program, there is not yet a need for a way to open a specific database;
this will change in the next release. Z Returns: A pointer to an opaque obje· describing
the database. The pointer is suitable for use with LQT_CloseDatabase. Z See Also:
LQT_InitFromArgv

‡ (p. 7); LQT_CloseDatabase‡ (opposite).

Database/Database
../liblqtext/close.c

API int
LQT_SyncDatabase(theDatabase)

t_LQTEXT_Database *theDatabase;

Syncs the current lq-text database; that is, writes any
pending data blocks to disk, and closes and deletes
any temporary files. You could think of this func-
tion as closing the database and then opening it

again, except that it doesn’t a·ually do that. ¶ Any a·ions that have been regi‚ered with
LQT_AddActionOnClosewith the lqt_on_syncflag are performed, including the ones

LQT_CloseDatabase Database/Database, p. 4
LQT_InitFromArgv Database/Defaults, p. 7
LQT_ObtainReadOnlyAccess Database/Database, Data-

base/Files, p. 5
LQT_ObtainWriteAccess Database/Database, Data-

base/Files, p. 5
LQT_OpenDatabase Database/Database, p. 5
LQT_OpenKeyValueDatabase Database/Dynamic Hashing,

Database/Files, p. 38

that liblqtext has regi‚ered internally. ¶ It is not necessary to call LQT_SyncDatabase
before closing a database, as LQT_CloseDatabase does this. Z Returns: zero. Z See Also:
LQT_AddActionOnClose

‡ (p. 3); LQT_OpenDatabase ‡ (previous page); LQT_CloseDa-
tabase

‡ (p. 4).

LQT_AddActionOnClose Database/Database, p. 3
LQT_CloseDatabase Database/Database, p. 4
LQT_OpenDatabase Database/Database, p. 5

Database/Defaults

This category relates to user preferences, which may be found in the database confi-
guration file readme, in the environment or on the command-line on operating
sy‚ems where those make sense, or in a per-user configuration file.

Currently, mo‚ of the preferences and configuration code exi‚s only as a set of
place-holders.

A program should do the following on ‚artup: 1. Set the global variable prog-
name to a useful value; 2. Call LQT_InitFromArgv to obtain an Options obje·;
this may result in argv being changed. 3. Handle any program-specific command-
line options; 4. Call LQT_OpenDatabase with the Options obje· obtained earlier,
and also with o_rdonly or o_rdwr as appropriate.

Finally, on exit, the program should call LQT_CloseDatabase; this is optional if
you only used read-only access to the database.

LQT_GetOption 7
LQT_InitFromArgv 7
LQT_InitialiseChara·erTypes 8
LQT_PrintDefaultUsage 8

Database/Defaults
../liblqtext/defaults.c

API void *
LQT_GetOption(Options, Name)

t_lqdbOptions *Options;
char *Name;

This fun·ion returns the value of a configuration
option. The options at present include: 1. ‘direc-
tory’, which is the name of the dire·ory containing
the lq-text database; 2. ‘‚op li‚’, which is the name
of a file containing words that are not indexed;

3. ‘file search path’, which is a colon-separated li‚ of dire·ories that are searched for docu-
ments during indexing and retrieval, and 4. ‘phrase match level’, which determined how
precisely phrases are matched. Z Returns: A pointer to the a·ual value; do not free this
value. Z See Also: LQT_OpenDatabase ‡ (p. 5).

Database/Defaults
../liblqtext/defaults.c

API t_lqdbOptions *
LQT_InitFromArgv(argc, argv)

int argc;
char **argv;

This fun·ion is called to Initialise the lq-text
libraries. It sets the global variable ‘progname’ from
argv[0], but does not remove any leading direc-
tories; if you want ju‚ the command name to
appear in error messages and other output, you

should set progname in main() before calling LQT_InitFromArgv. ¶ After setting prog-
name, LQT_InitFromArgv handles any lq-text command-line options. Currently, each

LQT_OpenDatabase Database/Database, p. 5

option is turned into either -z if it does not take an argument, or -Z if it take an argument.
As a result, you should ignore -z and -Z options if they appear, together with the argument
to -Z, and you should not give your program a -z or -Z option. This behaviour will change
completely in a future release of lq-text, when improved command-line argument hand-
ling is introduced. ¶ The command line options currently under‚ood include: 1. -d dir,
to specify a database dire·ory 2. -m p|h|a, to specify whether to match phrases precisely,
heuri‚ically, or approximately; 3. -t flags, to turn on tracing; the given flags should be a
‚ring of debugging flag names separated by the vertical bar (|). An example would be -t
Trace|Debug, but you will usually need to quote the argument to prote· it from the shell.
The value Li‚ will print a li‚ of available values. Z Re‚ri·ions: Mu‚ be called before any
other liblqtext fun·ions. Z Returns: A pointer to an obje· used to represent options; this
obje· should be passed to LQT_OpenDatabase(). Z See Also: LQT_OpenDatabase ‡ (p. 5).

Database/Defaults,
Database/Words,

Language/Stemming
../liblqtext/·ype.c

LIBRARY void
LQTp_InitialiseCharacterTypes(db)

t_LQTEXT_Database *db;

Initialises the tables used to determine whether a
given chara·er is part of a word or not. ¶ This func-
tion is called automatically by LQT_-
OpenDatabase(). Z Returns: zero on success.

Database/Defaults
../liblqtext/defaults.c

API void
LQT_PrintDefaultUsage(Options)

t_lqdbOptions *Options;

Prints to ‚derr a usage message that describes com-
mand-line options specific to (and interpreted by)
liblqtext. You should call this if an unknown com-
mand-line option was found, other than -z or -Z.

Z Notes: This routine will change in the next release, with an entirely new argument pro-
cessing mechanism. Z See Also: LQT_InitFromArgv‡ (previous page).

LQT_InitFromArgv Database/Defaults, p. 7 LQT_OpenDatabase Database/Database, p. 5

Database/Retrieval

Fun·ions in this category are used to get information back from the database. This
is what it’s all about: the fun·ions this category are the main rationale for the exis-
tance of the database package.

LQT_FIDToDocumentTitle 9
LQT_FIDToFileInfo 9
LQT_FindFir‚WIDMatchingPattern 10
LQT_FindFir‚WIDMatchingPrefix 11
LQT_FindMatchEnds 11
LQT_FindNextWIDMatchingPattern 11
LQT_FindNextWIDMatchingWildCard 12
LQT_GetFileModes 12
LQT_GetWordPlaces 13
LQT_GetWordPlacesWhere 13
LQT_Getpblock 13
LQT_GetpblockWhere 14
LQT_NameToFID 14
LQT_ReadWordFromFileInfo 14
LQT_ReadWordFromStringPointer 15
LQT_WIDToWord 15
LQT_WIDToWordInfo 16
LQT_WordToWID 16

Database/Retrieval,
Database/Documents
../liblqtext/gettitle.c

API char *
LQT_FIDToDocumentTitle(db, FID, Name)

t_LQTEXT_Database *db;
t_FID FID;
char *Name;

Returns a document title (from the database ‘titles’
file) for a given fid. A binary search is used to
locate a line in the titles file which ‚arts with the
given fid, as a decimal ascii number, followed by a

tab; the remainder of that line up to a newline or eof is returnd. The second (Name)
argument is only used on error. Z Returns: 1. the title on success, in a ‚atic bu⁄er 2. The
given Name pointer on error. Z Errors: Warns if the title file can’t be opened. Z Notes: The
‘lqkwic’ client uses this fun·ion to expand ${Title}.

Database/Retrieval,
Database/Documents
../liblqtext/fileinfo.c

API t_FileInfo *
LQT_FIDToFileInfo(db, FID)

t_LQTEXT_Database *db;
t_FID FID;

Returns the in-memory t_FileInfo ‚ru· associated
with a given fid, reading the information from the
database as necessary. The returned value, if non-
zero, is created with malloc; it is the caller’s responsi-
bility to free the ‚orage. Z See Also: LQT_NameTo-

FID
‡ (p. 14); LQT_DestroyFileInfo‡ (p. 35). Z Returns: 1. the t_FileInfo * on success;

LQT_DestroyFileInfo Database/Documents, Memory, p. 35 LQT_NameToFID Database/Retrieval, Database/Docu-
ments, p. 14

2.null on error. Z Errors: Warns if the database can’t be opened. Z See Also: LQT_Name-
ToFID

‡ (p. 14); LQT_DestroyFileInfo‡ (p. 35).

Database/Retrieval,
Database/Words

../liblqtext/wordinfo.c

API t_WID
LQT_FindFirstWIDMatchingPattern(

db,
Pattern,
PatternLength,
PrefixLength,
Matcher,
Argument)
t_LQTEXT_Database *db;
unsigned char *Pattern;
int PatternLength;
int PrefixLength;
int (* Matcher)(

/* prefix with ‘the’ in order to avoid old gcc bug */
t_LQTEXT_Database *thedb,
unsigned char *theString,
int theStringLength,
unsigned char *thePattern,
int thePatternLength,
int thePrefixLength,
unsigned char *theArgument

);
unsigned char *Argument;

Returns the lowe‚ wid whose word matches the given Pattern. ¶ The Pattern need not
be nul-terminated; the given PatternLength argument is used to find the end of the Pat-
tern. ¶ The given PrefixLength argument mu‚ specify the number of leading chara·ers,
if any, in the given Pattern that form a con‚ant prefix. If there are no such chara·ers,
matching is likely to be several orders of magnitude slower, as LQT_-
FindFirstWIDMatchingPattern will have to try every word in the database vocabu-
lary, one at a time, until it finds one that matches. ¶ The given Matcher argument mu‚ be
a pointer to a fun·ion that will try to match the ‚ring to the given pattern, and that will
return zero only on a match. The con‚ant lqt_widmatch_failed is available in
<liblqtext.h> to be returned by the given Matcher fun·ion, indicating that LQT_-
FindFirstWIDMatchingPattern should fail and return zero immediately. This might
be used if the given Matcher fun·ion is called with a ‚ring lexically greater than the larg-
e‚ that could ever match it, or after reporting an error. ¶ The given Argument is passed
on to the Matcher fun·ion, for the convenience of the caller. Z Returns: Thewid on suc-
cess, and zero on failure. Z Errors: Warns if a database format error is dete·ed. Z See Also:
LQT_WordToWID

‡ (p. 16).

LQT_DestroyFileInfo Database/Documents, Memory, p. 35
LQT_NameToFID Database/Retrieval, Database/Docu-

ments, p. 14
LQT_WordToWID Database/Retrieval, Database/Words,

p. 16

Database/Retrieval,
Database/Words
../liblqtext/wordinfo.c

API t_WID
LQT_FindFirstWIDMatchingPrefix(db, Prefix, PrefixLength)

t_LQTEXT_Database *db;
char *Prefix;
int PrefixLength;

Returns the lowe‚ wid whose word matches the
given Prefix. ¶ The Prefix need not be nul-ter-
minated; the given PrefixLength argument is used
to find the end of the Prefix. Z Returns: Thewid on

success, and zero on failure. Z Errors: Warns if a database format error is dete·ed. Z See
Also: LQT_WordToWID‡ (p. 16).

Database/Retrieval,
Database/Documents
../liblqtext/matchend.c

API t_O⁄setPair *
LQT_FindMatchEnds(db, Bu⁄er, Length, StartBlock, BIF, WIB, NumberOfWords)

t_LQTEXT_Database *db;
char *Bu⁄er;
unsigned int Length;
char *StartBlock;
unsigned long BIF;
unsigned long WIB;
int NumberOfWords;

Returns pointers to the ‚art and end of the matched
text in the given bu⁄er. LQT_FindMatchEnds

mu‚ be called with at lea‚ one block of data
(fileblocksize in <globals.h> , usually 64 bytes)
either side of the block containing the match. Pro-
viding more blocks before the matched block is
more likely to result in a corre· return value, as

there are some special cases involving words spanning block boundaries that are be‚
dealt with by looking a block further back until a block boundary is found that has a space
to one side of it, and LQT_FindMatchEnds does this. ¶ The Bu⁄er argument is the text
from the file, with StartBlock being a pointer to the fir‚ chara·er in the block containing
the match. The bif and wib arguments are the Block In File and Word In Block fields
from the match, and the NumberOfWords argument determines the number of words in
the match, for setting the match end pointer. Z Returns: 1. a t_O⁄setPair on success, con-
taining pointers to the fir‚ matched chara·er and the la‚ matched chara·er. 2. zero if
the match wasn’t found Z See Also: LQT_ReadWordFromStringPointer‡ (p. 15).

Database/Retrieval,
Database/Words
../liblqtext/wordinfo.c

API t_WID
LQT_FindNextWIDMatchingPattern(

LQT_ReadWordFromStringPointer Database/Retrieval,
Database/Documents, p. 15

LQT_WordToWID Database/Retrieval, Database/Words,
p. 16

db,
WID,
Pattern,
PatternLength,
PrefixLength,
Matcher,
Argument)
t_LQTEXT_Database *db;
t_WID WID;
unsigned char *Pattern;
int PatternLength;
int PrefixLength;
int (* Matcher)(

t_LQTEXT_Database *thedb,
unsigned char *theString,
int theStringLength,
unsigned char *thePattern,
int thePatternLength,
int thePrefixLength,
unsigned char *theArgument

);
unsigned char *Argument;

Returns the lowe‚ wid whose word matches the
given pattern, and that is greater than the givenwid
argument. The pattern is a ‚ring, which mu‚ be an
all-lower-case prefix. The given wildcard chara·er
mu‚ be either * or ?, to indicate zero or more follow-
ing chara·ers or exa·ly one following chara·er,
respe·ively. ¶ The Prefix need not be nul-ter-
minated; the given PrefixLength argument is used
to find the end of the prefix. Z Returns: Thewid on
success, and zero on failure. Z Errors: Warns if a
database format error is dete·ed. Z See Also:
LQT_FindFirstWIDMatchingPattern

‡ (p. 10).

Database/Retrieval,
Database/Words

../liblqtext/wordinfo.c

API t_WID
LQT_FindNextWIDMatchingWildCard(db, WID, Prefix, PrefixLength)

t_LQTEXT_Database *db;
t_WID WID;
char *Prefix;
int PrefixLength;

Returns the lowe‚ wid whose word matches the
given pattern, and that is greater than the givenwid
argument. The pattern is a ‚ring, which mu‚ be an
all-lower-case prefix. The given wildcard chara·er

mu‚ be either * or ?, to indicate zero or more following chara·ers or exa·ly one follow-
ing chara·er, respe·ively. ¶ The Prefix need not be nul-terminated; the given Prefix-
Length argument is used to find the end of the prefix. Z Returns: Thewid on success, and
zero on failure. Z Errors: Warns if a database format error is dete·ed. Z See Also:
LQT_FindFir‚WIDMatchingWildCard (undocumented);

Database/Retrieval,
Database/Physical

../liblqtext/smalldb.c

API void
LQT_GetFileModes(db, Flagsp, Modesp)

t_LQTEXT_Database *db;
int *Flagsp;
int *Modesp;

Returns the current file modes, as determined by
LQT_ObtainReadOnlyAccess or LQT_-
ObtainWriteAccess, in Flagsp and Modesp. The
returned values are suitable for passing to open(2).
Z Errors: Passing null pointers causes a fatal (E_-

BUG) error. Z See Also: LQT_OpenDatabase ‡ (p. 5); LQT_ObtainWriteAccess‡ (p. 5);
LQU_Eopen

‡ (p. 72).

LQT_FindFirstWIDMatchingPattern Database/Retrieval,
Database/Words, p. 10

LQT_ObtainWriteAccess Database/Database, Data-
base/Files, p. 5

LQT_OpenDatabase Database/Database, p. 5
LQU_Eopen Utilities/Files, p. 72

Database/Retrieval,
Database/Physical
../liblqtext/rpblock.c

API t_WordPlace *
LQT_GetWordPlaces(db, WID, Block, BlockLength, NextO⁄set, NumberExpe·ed)

t_LQTEXT_Database *db;
t_WID WID;
unsigned char *Block;
unsigned int BlockLength;
unsigned long NextO⁄set;
unsigned long *NumberExpe·ed;

Reads all the places for a given word into memory,
and returns a freshly malloc’d array of t_WordPlaces.
It is the caller’s responsibility to free the resulting
array. ¶ The arguments are as for LQT_-
GetWordPlacesWhere. Z See Also: LQT_Get-
WordPlacesWhere

‡ (below);
LQT_MakeMatchesWhere

‡ (p. 17).

Database/Retrieval,
Database/Physical
../liblqtext/rpblock.c

API t_WordPlace *
LQT_GetWordPlacesWhere(

db,
WID, Block, BlockLength,
NextO⁄set,
NumberExpe·ed,
AcceptFunc)
t_LQTEXT_Database *db;
t_WID WID;
unsigned char *Block;
unsigned int BlockLength;
unsigned long NextO⁄set;
unsigned long *NumberExpe·ed;
int (* AcceptFunc)(

t_LQTEXT_Database *,
t_WID,
t_WordPlace *

);

Used to read the matches from disk for the given
wid. ¶ A WordPlace describes a single occurrence
of a word. Hence, if you call this fun·ion with the
wid of ‘the’, you’ll get back an array large enough to
hold every occurrence of ‘the’ in the entire database.
The AcceptFunc argument is a fun·ion that is
called before each match is inserted into the array; it
can return either zero or one. If it returns zero, the
match is not inserted into the array; this can save
memory, and also allows you to process the matches
as they are read from disk, in‚ead of waiting for
them all before doing anything with them. ¶ The
given Block argument is a pointer to an in-memory
bu⁄er holding the fir‚ few bytes of data; usually
this comes from the ‘widindex’ fixed record length
file. Z Notes: This fun·ion is very low-level; nor-
mally, you should use LQT_MakeMatches or

LQT_MakeMatchesWhere in‚ead. Z See Also: LQT_GetWordPlaces‡ (above);
LQT_GetpblockWhere

‡ (overleaf); LQT_StringToPhrase‡ (p. 22); LQT_MakeMatches-
Where

‡ (p. 17).

Database/Retrieval,
Database/Physical
../liblqtext/rpblock.c

API t_pblock *
LQT_Getpblock(db, WordInfo)

t_LQTEXT_Database *db;
t_WordInfo *WordInfo;

Returns a freshly malloc’d t_pblock containing all of
the WordPlaces for a given WordInfo; one for each
occurrence of that word in the database. Z Returns:
1. the number of words added on success; 2. –1 if the
file couldn’t be opened. Z Errors: Warns if the file

can’t be opened. Z See Also: LQT_GetpblockWhere‡ (overleaf).

LQT_GetWordPlaces Database/Retrieval, Database/Physical,
p. 13

LQT_GetWordPlacesWhere Database/Retrieval, Data-
base/Physical, p. 13

LQT_GetpblockWhere Database/Retrieval, Data-
base/Update, Database/Physical, p. 14

LQT_MakeMatchesWhere Retrieval/Matching,
Retrieval/Phrases, p. 17

LQT_StringToPhrase Retrieval/Phrases, p. 22

Database/Retrieval,
Database/Update,
Database/Physical

../liblqtext/rpblock.c

API t_pblock *
LQT_GetpblockWhere(db, WordInfo, AcceptFunc)

t_LQTEXT_Database *db;
t_WordInfo *WordInfo;
int (* AcceptFunc)(

t_LQTEXT_Database *,
t_WID,
t_WordPlace *

);

Look up a word in the database… and return a li‚ of
all the WordPlaces where it’s found. The
AcceptFunc is called for each place as it is read o⁄
the disk, with the given db, the wid and the new
WordPlace as arguments. If the AcceptFunc returns
a positive value, the WordPlace is accepted; other-
wise, it is not included in the returned t_pblock.

Note that it is possible to end up with a pblock with no WordPlaces at all if the
AcceptFunc never returns a positive value. An AcceptFunc of null is considered to
return 1 in every case. Z Returns: a freshly malloc’d t_pblock containing all of the Word-
Places from the disk that the AcceptFunc accepted, and with NumberOfWordPlaces set
to the number of such places. Z Notes: Normally you would use LQT_MakeMatches
in‚ead of this fun·ion. This fun·ion is used internally, and also by lq-text clients that
update the database e‹ciently. Z Errors: Database format errors are nearly always fatal.
Z See Also: LQT_MakeMatches‡ (p. 17).

Database/Retrieval,
Database/Documents

../liblqtext/fileinfo.c

API t_FID
LQT_NameToFID(db, Name)

t_LQTEXT_Database *db;
char *Name;

Returns the fid associated with a given file name
Z Returns: 1. the fid on success 2. zero on failure
Z See Also: LQT_FIDToFileInfo‡ (p. 9); LQT_Get-
MaxOrAllocateFID

‡ (p. 36). Z Errors: Warns if
the database can’t be opened. If the filename is not

matched in the database, no warning is given, but zero is returned.

Database/Retrieval,
Database/Documents

../liblqtext/readword.c

API t_WordInfo *
LQT_ReadWordFromFileInfo(db, FileInfo, Flags)

t_LQTEXT_Database *db;
t_FileInfo *FileInfo;
unsigned int Flags;

The same as LQT_ReadWordFromStringPointer,
but uses a file * that the caller has created in the
given t_FileInfo ‚ru·ure. Z Notes: See LQC_-
MakeInput in the lqaddfile client for one way to

create a FileInfo; that routine will move into the api in a future release, but probably with
slight changes to its interface. Z See Also: LQT_ReadWordFromStringPointer‡ (oppo-
site).

LQT_FIDToFileInfo Database/Retrieval, Database/Docu-
ments, p. 9

LQT_GetMaxOrAllocateFID Database/Documents, p. 36
LQT_MakeMatches Retrieval/Matching, Retrieval/Phrases,

p. 17
LQT_ReadWordFromStringPointer Database/Retrieval,

Database/Documents, p. 15

Database/Retrieval,
Database/Documents
../liblqtext/readword.c

API t_WordInfo *
LQT_ReadWordFromStringPointer(db, Stringpp, Startp, Endp, Flags)

t_LQTEXT_Database *db;
char **Stringpp;
char **Startp;
CONST char *Endp;
unsigned int Flags;

Returns the next natural-language word from the
given nul-terminated ‚ring. ¶ The definition of a
word for the purpose of this routine is determined
partly by the definitions for LQT_StartsWord,
LQT_OnlyWithinWord and LQT_EndsWord in

the header file <wordrules.h> , and partly on the configuration file in the database dire·ory,
where indexnumbers, minwordlength and maxwordlength may be set. ¶ If the argu-
ments are all null, the e⁄e· is to reset the routine ready to ‚art a new ‚ring, and no use-
ful value is returned in that case. ¶ The given Flags argument may either be zero or any
combination of lqt_readword_ignore_common and lqt_readword_wildcards,
or’d together. ¶ Chara·ers are read from the ‚ring, incrementing *Stringpp as each byte
is processed, until a recognised word is found. If the lqt_readword_ignore_-

common flag was set in Flags, LQT_ReadWordFromStringPointer continues until
either a word is found that has not been regi‚ered as being too common to index, or the
end of the ‚ring is reached. ¶ If Startp is not anull pointer, *Startp is set to point to the
fir‚ chara·er in the word that has been found in the given Stringpp (not to the malloc’d
copy in the result). ¶ If Endp is a null pointer, the ‚ring is considered to be terminated
by the fir‚ zero byte reached; otherwise, Endp mu‚ point to the fir‚ chara·er not in the
‚ring; normally, Endp would be set to point to the terminating nul byte. ¶ If the lqt_-
readword_wildcards flag is set, the ‘Wild Card’ chara·ers * and ? are allowed within
words. Such chara·ers do not count as pun·uation for the returned WordInfo flags.
Z Returns: the next WordInfo on success, or zero if there are no more words to read in the
‚ring. Z Notes: All client programs and library routines which parse words use this rou-
tine or the companion LQT_ReadWordFromFileInfo routine. This is very important,
because lq-text relies on word counts within each block of text to be the same on retrieval
as they were on indexing, and if di⁄erent routines parsed the data each time there would
be a chance of discrepancies. Z Bugs: The interface to this routine is somewhat ugly, and
may be changed in the next release with the addition of a Reset routine and a block o⁄set
counter.

Database/Retrieval,
Database/Words
../liblqtext/wordinfo.c

API char *
LQT_WIDToWord(db, WID)

t_LQTEXT_Database *db;
t_WID WID;

Returns the word corresponding to a given wid.
Z Returns: 1. the word on success 2. zero on failure,
or if the wordli‚ database parameter was set to o⁄
when the word was la‚ written to the database
Z Notes: LQT_WIDToWord may be ine‹cient or

unavailable if the wordli‚ parameter in the database config file is set to o⁄. See the

lqwordli‚ program for alternate ways of obtaining access to the index vocabulary.

Database/Retrieval,
Database/Words

../liblqtext/wordinfo.c

API t_WordInfo *
LQT_WIDToWordInfo(db, WID)

t_LQTEXT_Database *db;
t_WID WID;

Returns the in-memory WordInfo ‚ru·ure for a
given wid. Z Returns: 1. t_WordInfo * on success;
2.null on failure, or if th givenwid argument was
zero. Z Errors: Warns if a database format error is
dete·ed. Z See Also: LQT_WordToWID‡ (below).

Database/Retrieval,
Database/Words

../liblqtext/wordinfo.c

API t_WID
LQT_WordToWID(db, Word, Length)

t_LQTEXT_Database *db;
char *Word;
unsigned int Length;

Returns the wid for a given Word. It is not neces-
sary that the word be nul terminated. The Length
argument is the number of bytes in the Word, not
including any trailing nul byte Z Returns: 1. the
wid on success 2. 0 on failure Z See Also: LQT_WID-

ToWordInfo
‡ (above). Z Errors: Fatal error if the database can’t be opened.

LQT_WIDToWordInfo Database/Retrieval, Data-
base/Words, p. 16

LQT_WordToWID Database/Retrieval, Database/Words,
p. 16

Retrieval/Matching

This se·ion describes routines used for matching words and phrases, and for fetching
the results.

LQT_AllPhrasesOfLengthNOrMore 17
LQT_MakeMatches 17
LQT_MakeMatchesWhere 17
LQT_ParseQuery 18
LQT_PrintAndAcceptOneMatch 18
LQT_PrintAndReje·OneMatch 18
LQT_ResetPhraseMatch 19

Retrieval/Matching,
Retrieval/Phrases
../liblqtext/phrall.c

API t_PhraseElement *
LQT_AllPhrasesOfLengthNOrMore(db, N, theQuery, Countp)

t_LQTEXT_Database *db;
int N;
char *theQuery;
long *Countp;

Finds all sequences of N or more words which occur
in the data. For example, given the phrase ‘the bare-
footed boy was very slender’, and supposing ‘the’ to
be the only word for which LQT_-

WordIsInStopList returns true, LQT_AllPhrasesOfLengthNOrMore might find
‘barefooted boy’ and ‘boy was very’ and ‘very slender’ as sub-phrases that occur; if the
entire phrase occurs, it will be returned. ¶ If a phrase of M words matches, all phrases of
lengths from N to M inclusive will also be returned. ¶ It is the caller’s responsibility to
deallocate the returned array and its elements. Z Returns: an array of t_PhraseElement
‚ru·ures, and the number of di‚in· phrases found in *Countp. Z Notes: This fun·ion
is experimental. It has not been optimised, and is currently unusable for long phrases as a
result.

Retrieval/Matching,
Retrieval/Phrases
../liblqtext/phrase.c

API long
LQT_MakeMatches(thedb, Phrase)

t_LQTEXT_Database *thedb;
t_Phrase *Phrase;

This is equivalent to LQT_MakeMatchesWhere

with a null AcceptFun·ion, and is provided for con-
venience. Z See Also: LQT_StringToPhrase‡

(p. 22); LQT_MakeMatchesWhere‡ (below).

Retrieval/Matching,
Retrieval/Phrases
../liblqtext/phrase.c

API long
LQT_MakeMatchesWhere(db, Phrase, AcceptFun·ion)

LQT_MakeMatchesWhere Retrieval/Matching,
Retrieval/Phrases, p. 17

LQT_StringToPhrase Retrieval/Phrases, p. 22

t_LQTEXT_Database *db;
t_Phrase *Phrase;
int (*AcceptFunction)(

t_LQTEXT_Database *,
t_Phrase *,
t_Match *

);

Matches the given phrase, and returns the number
of successful matches. The given AcceptFun·ion is
called for each match; it mu‚ return one of the fol-
lowing flags as defined in <phrase.h> : either
lqmatch_accept, which adds the match to the
result, or lqmatch_reject, which does not add the
match to the result. In addition, either of these flags

may be combined (using bitwise or) with lqmatch_quit, in which case LQT_-
MakeMatchesWhere will return the result colle·ed so far and abandon further pro-
cessing, or lqmatch_next_file, in which case LQT_MakeMatchesWherewill not call
the AcceptFun·ion again until a match is found in a document with a di⁄erent File Iden-
tifier (fid). ¶ A null AcceptFun·ion pointer is equivalent to one that always returns
lqmatch_accept, except much more e‹cient. Z Returns: The number of matches
accepted. All matches that are accepted are ‚ored in the given Phrase obje·. Z See Also:
LQT_StringToPhrase

‡ (p. 22).

Retrieval/Matching,
Retrieval/Phrases

../liblqtext/query.c

API t_LQT_Query *
LQT_ParseQuery(db, theString)

t_LQTEXT_Database *db;
char *theString;

Parses the given ‚ring, and returns a Query obje·.
Z Returns: The new Query obje·, or LQT_-
BadQuery on error. Z See Also: LQT_StringTo-
Phrase

‡ (p. 22).

Retrieval/Matching,
Retrieval/Phrases

../liblqtext/apmatch.c

API int
LQT_PrintAndAcceptOneMatch(db, Phrase, Match)

t_LQTEXT_Database *db;
t_Phrase *Phrase;
t_Match *Match;

This is intended for use as a callback fun·ion to be
passed as an argument to LQT_-
MakeMatchesWhere. It prints each match to
‚dout as it is read from disk, and also accepts it so

that it is retained in the Phrase data ‚ru·ure. Z Returns: lqm_accept Z See Also:
LQT_StringToPhrase

‡ (p. 22); LQT_PrintAndRejectOneMatch‡ (below).

Retrieval/Matching,
Retrieval/Phrases

../liblqtext/rpmatch.c

API int
LQT_PrintAndRejectOneMatch(db, Phrase, Match)

t_LQTEXT_Database *db;
t_Phrase *Phrase;
t_Match *Match;

This is intended for use as a callback fun·ion to be
passed as an argument to LQT_-
MakeMatchesWhere. It prints each match to
‚dout as it is read from disk, and also reje·s it so

that it is not retained in the Phrase data ‚ru·ure. Z Returns: lqm_accept Z See Also:
LQT_StringToPhrase

‡ (p. 22); LQT_PrintAndRejectOneMatch‡ (above).

LQT_PrintAndRejectOneMatch Retrieval/Matching,
Retrieval/Phrases, p. 18

LQT_StringToPhrase Retrieval/Phrases, p. 22

Retrieval/Matching,
Retrieval/Phrases
../liblqtext/phrreset.c

ARGSUSED2*/
API void
LQT_ResetPhraseMatch(db, thePhrase)

t_LQTEXT_Database *db;
t_Phrase *thePhrase;

Resets internal pointers within a phrase so that
LQT_MakeMatches can be called. This is also
called by LQT_MakeMatches and LQT_-
MakeMatchesWhere, and is provided so that cli-
ents can write their own phrase matching routines

compatibly. Z See Also: LQT_StringToPhrase‡ (p. 22); LQT_MakeMatches‡ (p. 17).

LQT_MakeMatches Retrieval/Matching, Retrieval/Phrases,
p. 17

LQT_StringToPhrase Retrieval/Phrases, p. 22

Retrieval/Phrases

The mo‚ comnonly used lq-text fun·ions are in this category (and also in the Data-
base/Defaults se·ion, ‚ri·ly speaking).

Fun·ions in this category deal with converting a ‚ring into an internal data
‚ru·ure representing a phrase, and getting a li‚ of matches for that phrase.

The intermediate ‚ep involving the internal data ‚ru·ure allows clients to deter-
mine useful information, such as how many words were recognised in the phrase,
without the overhead of doing the a·ual match.

LQT_De‚royPhrase 21
LQT_NumberOfWordsInPhrase 21
LQT_PhraseToString 22
LQT_StringToPhrase 22
LQT_UnknownWordsInPhrase 22

Retrieval/Phrases, Memory
../liblqtext/freephr.c

API void
LQT_DestroyPhrase(db, Phrase)

t_LQTEXT_Database *db;
t_Phrase *Phrase;

Frees any memory associated with the given phrase,
and then frees the Phrase itself. After calling LQT_-
DestroyPhrase, it is an error to attempt to derefer-
ence the Phrase, and the operating sy‚em may
dete· this and raise an exception or send a fatal sig-

nal. Z Notes: LQT_DestroyPhrase does not follow the Next element of the given Phrase.
A caller doing this should take a copy of Phrase→Next before calling LQT_-
DestroyPhrase, as after the call the pointer itself will be inaccessible. Z See Also:
LQT_StringToPhrase

‡ (overleaf).

Retrieval/Phrases
../liblqtext/phrnword.c

ARGSUSED2*/
API int
LQT_NumberOfWordsInPhrase(db, Phrase)

t_LQTEXT_Database *db;
t_Phrase *Phrase;

Returns the number of recognised words in the phrase. Common words, or other things
that the various LQT_ReadWord fun·ions would skip, are not included in the count. A
phrase containing no recognised words can never be matched. Z Returns: the number of
words in the phrase. Z See Also: LQT_ReadWordFromStringPointer‡ (p. 15).

LQT_ReadWordFromStringPointer Database/Retrieval,
Database/Documents, p. 15

LQT_StringToPhrase Retrieval/Phrases, p. 22

Retrieval/Phrases
../liblqtext/ph‚ring.c

API char *
LQT_PhraseToString(db, Phrase)

t_LQTEXT_Database *db;
t_Phrase *Phrase;

Returns a ‚ring representation of a phrase.</P>.
¶ This can be used for tracing, or to give users feed-
back about how a phrase query was interpreted.
Z Returns: a pointer to a freshly malloc’d ‚ring,
which the caller should free. Z See Also:

LQT_StringToPhrase
‡ (below).

Retrieval/Phrases
../liblqtext/ph‚ring.c

API t_Phrase *
LQT_StringToPhrase(db, String)

t_LQTEXT_Database *db;
char *String;

Creates a data ‚ru·ure representing the natural
language phrase contained in the given String.
¶ Words in the phrase that could not possibly be in
the index are not included in the ‚ru·ure. This
could be because they are in the ‚op li‚ or are too

short, or because the IndexNumbers parameter is set to ‘o⁄’ in the database configuration
file and the words begin with a digit. ¶ Words that could be in the database, but are not,
are also excluded, but in this case the phrase cannot of course be matched. ¶ Words end-
ing in * or ? are considered to be wildcards; they are expanded automatically by LQT_-
MakeMatchesWhere, or you can use LQT_ExpandWildCard to iterate over all the
matches. ¶ You can use LQT_NumberOfWordsInPhrase on the returned result, if it is
notnull, to determine the number of words in the ‚ring that were recognised as words
that are in the database. ¶ The result of LQT_StringToPhrase can be passed to LQT_-
MakeMatches to find all occurrences of the phrase in the database.</P>. Z Returns: the
created t_Phrase, ornull if either an error occurred or there were no recognised words in
the given String. Z See Also: LQT_MakeMatchesWhere‡ (p. 17); LQT_DestroyPhrase‡

(previous page).

Retrieval/Phrases
../liblqtext/phrunkw.c

ARGSUSED2*/
API int
LQT_UnknownWordsInPhrase(db, Phrase)

t_LQTEXT_Database *db;
t_Phrase *Phrase;

Returns the number of unrecognised words in the given phrase. A phrase containing any
unrecognised words can never be matched. Z Notes: This number is not included in the
result of LQT_NumberOfWordsInPhrase. Z Returns: the number of unrecognised
words in the phrase.

LQT_DestroyPhrase Retrieval/Phrases, Memory, p. 21
LQT_MakeMatchesWhere Retrieval/Matching,

Retrieval/Phrases, p. 17
LQT_StringToPhrase Retrieval/Phrases, p. 22

ErrorHandling

Currently, the lq-text library uses a fairly simpli‚ic error handling policy that can
result in calls to the sy‚em call <var>exit</var>. The fun·ion LQE_Error is
called with an argument indicating the severity of the error, combined with bitwise
‘or’ with any of a number of flags.

In addition, there are a number of wrappers for sy‚em calls that are integrated
with the error handling mechanism. These routines perform in exa·ly the same
way as the corresponding sy‚em calls or library fun·ions if there are no errors, but,
in the event of an error, call LQE_Error with a much clearer message than (for
example) ‘perror’ would generate.

Error Handling
../liblqerror/error.c

void
Error(Severity, format, a, b, c, d, e, f, g, h)

unsigned int Severity;
CONST char *format;
int a, b, c, d, e, f, g, h;

Prints an error message, treating the given format
argument as a printf-‚yle format. The remaining
arguments are optional, as for printf. ¶ The error
message is prepended by the command name
(using the cmdname global variable, if set, or the

value of the $cmdname environment variable otherwise), the program name (using the
value of the global ‘progname’, assigned by LQT_InitFromArgv from argv[0] if not
already set), and a ‚ring denoting the severity of the error, as determined by the Severity
argument. ¶ The Severity argument is a combination using bitwise or of the values
defined in <error.h>, of which the mo‚ commonly used are as follows: ¶ E_FATAL, which
makes Error call exit and terminate the program;</P>. ¶ E_WARN, which makes Error
print ‘warning: ’, and does not call exit; ¶ E_BUG, used on an assertion failure or on dete·-
ing a severe problem that should be caught by te‚ing; if any trace flags are set, E_BUG
makes Error call abort to generate a core dump. ¶ E_MEMORY; you should always
include this if you think it might not be safe to call malloc, for example because the heap
is corrupted or there is no more free memory. ¶ E_SYS, which indicates a failed sy‚em or
library call, and makes Error print the corresponding sy‚em error message using errno;
be warned that on mo‚ sy‚ems, printf and other ‚dio fun·ions may cause errno to be
set even when there is no error, since they call isatty, which sets errno as a side-e⁄e·.
¶ E_INTERNAL, which makes Error prepend the message with the ‚ring ‘internal error:
’; ¶ E_MULTILINE, which should be used on all lines of a multi-line error message where
Error is called multiple times; the la‚ call to Error in the sequence mu‚ include the E_-
LASTLINE flag; ¶ E_LASTLINE, which is only ever used on the la‚ of a sequence of sev-

eral successive calls to Error to build up a single message that spans several lines; in the
case of E_FATAL errors, it is only on this call that Error will call exit, for example. Z Bugs:
An embedded newline in a ‚ring will cause a core dump on some sy‚ems. Error
appends a newline automatically, so the safe‚ thing to do is to omit the newline.

Tracing

The lq-text tracing mechanism may seem a little complex at fir‚, because it provides
a rich api. The fun·ions bear close inve‚igation, as they are used extensively within
all of the lq-text code, and are designed to be very e‹cient.

You can turn on or o⁄ tracing on any of a large number of features separately,
using symbolic con‚ants or ‚ring names.

The LQT_Trace fun·ion has an interface similar to ‘printf ’, and is thus very
‚raight forward to use.

The macro LQT_TraceFlagsSet is very e‹cient and can be used in a te‚ to
surround code that is only used when debugging or when providing more verbose
progress messages than usual.

LQT_FlagsToString 25
LQT_ForEachTraceFlag 26
LQT_GetGivenTraceFlagsAsString 26
LQT_GetTraceFlags 26
LQT_GetTraceFlagsAsString 27
LQT_SetTraceFile 27
LQT_SetTraceFlag 27
LQT_SetTraceFlagsFromString 27
LQT_StringToFlags 28
LQT_StringToWordFlags 28
LQT_Trace . 28
LQT_TraceFlagsSet 29
LQT_UnSetTraceFlag 29
LQT_WordFlagsToString 29

Tracing
../liblqtext/prflags.c

API char *
LQT_FlagsToString(Flags, WordFlagNamePairArray, Separator)

unsigned long Flags;
t_FlagNamePair *WordFlagNamePairArray;
char *Separator;

Returns a printable ‚ring representation of the given flags, primarily intended for
humans to read. The WordFlagNamePairArray argument is an array of (Name, Value)
pairs; for each such pair, if all set bits in Value are also set in the Flags argument passed to
LQT_FlagsToString, the corresponding Name ‚ring is appended to the result. The array
is terminated by a pair with a null Name pointer; this is used rather than a count so that
the array can be initialised at compile time. ¶ Adjacent Names in the result are separated
with the given separator. If the flags are zero, the array is searched for a Value of zero, and,

if one is found, the corresponding Name is used; to have a zero value return an empty
‚ring, use a pair with Name pointing to a zero-length ‚ring, not a null pointer. If no zero
Value is found, the ‚ring "none" is used in‚ead. Z Returns: a pointer to a ‚atically allo-
cated ‚ring. Z Errors: Passing null or invalid values for WordFlagNamePairArray or Sep-
arator will cause unpredi·able results. There mu‚ be enough memory to allocate the
result, which grows automatically as needed, but never shrinks. Z See Also:
LQT_StringToFlags

‡ (p. 28).

Tracing
../liblqtext/trace.c

API int
LQT_ForEachTraceFlag(CallMe)

void (* CallMe)(
char *Name,
unsigned int Value,
int isSet

);

Calls the given fun·ion for each available trace flag.
The integer argument IsSet passed to the fun·ion is
non-zero for those flags that are set in the current
trace flags, and zero for the others. ¶ The flags are
defined in the <lqtrace.h> header file. Z Returns:
zero. Z See Also: LQT_Trace‡ (p. 28); LQT_SetTra-
ceFlag

‡ (opposite).

Tracing
../liblqtext/trace.c

API char *
LQT_GetGivenTraceFlagsAsString(Flags)

t_TraceFlag Flags; This fun·ion works like LQT_-
GetTraceFlagsAsString, except that it uses the

given flags in‚ead of the current value of the lq-text trace flags. ¶ The caller should not
attempt to write into, or free, the result ‚ring. ¶ The flags are defined in the <lqtrace.h>
header file. Z Returns: non-zero if one or more flags satisfies the con‚raints Z Notes: You
can get a rather long line giving all possible flags using the C expression (t_TraceFlag)
˜(unsigned long) 0, which provides a number with all bits set, as an argument to LQT_-
GetGivenTraceFlagsAsString. Z See Also: LQT_Trace‡ (p. 28); LQT_SetTraceFlag‡

(opposite); LQT_GetTraceFlags‡ (below); LQT_GetTraceFlagsAsString‡ (opposite).

Tracing
../liblqtext/trace.c

API t_TraceFlag
LQT_GetTraceFlags()

Returns the current value of the lq-text trace flags.
The various flag values are defined in the <lqtrace.h>
header file, and may be combined (using bitwise or)

in any combination. ¶ The value returned by LQT_GetTraceFlags should not normally
be used by itself in diagno‚ic or error messages. In‚ead, use LQT_-
GetTraceFlagsAsString, which provides a more readable value for humans. Z Returns:
the current lq-text trace flags, or’d together Z See Also: LQT_Trace‡ (p. 28); LQT_SetTra-
ceFlag

‡ (opposite); LQT_UnSetTraceFlag‡ (p. 29); LQT_SetTraceFlagsFromString‡

(opposite).

LQT_GetTraceFlags Tracing, p. 26
LQT_GetTraceFlagsAsString Tracing, p. 27
LQT_SetTraceFlag Tracing, p. 27
LQT_SetTraceFlagsFromString Tracing, p. 27
LQT_StringToFlags Tracing, p. 28
LQT_Trace Tracing, p. 28
LQT_UnSetTraceFlag Tracing, p. 29

Tracing
../liblqtext/trace.c

API char *
LQT_GetTraceFlagsAsString()

Returns a ‚atic pointer to a ‚ring representation of
the current lq-text trace flags. This is suitable for
printing in error messages, and can also be used

with LQT_SetTraceFlagsFromString to save and re‚ore flags in a machine-indepen-
dent way. ¶ The caller should not attempt to write into, or free, the result ‚ring. ¶ The
flags are defined in the <lqtrace.h> header file. Z Returns: a pointer to a private ‚ring.
Z See Also: LQT_Trace‡ (overleaf); LQT_SetTraceFlag‡ (below); LQT_UnSetTraceFlag‡

(p. 29); LQT_GetGivenTraceFlagsAsString‡ (opposite); LQT_SetTraceFlagsFrom-
String

‡ (below).

Tracing
../liblqtext/trace.c

API FILE *
LQT_SetTraceFile(newFile)

FILE *newFile;

After this call, all lq-text tracing output produced
with LQT_Trace will be sent to the given file. It is
the caller’s responsibility to ensure that the given
file * is valid and points to a file that is open for

writing. ¶ The default file used before LQT_SetTraceFile has been called is ‚derr. An
argument of (file *) null will reset the file to the default value, but will not close the
given ‚ream. The file is also not when a database is closed; see LQT_AddActionOnClose
for a way of changing this behaviour. Z Returns: the previous file pointer Z See Also:
LQT_Trace

‡ (overleaf); LQT_SetTraceFlag‡ (below); LQT_AddActionOnClose ‡ (p. 3).

Tracing
../liblqtext/trace.c

API t_TraceFlag
LQT_SetTraceFlag(theFlag)

t_TraceFlag theFlag;

Adds the given argument to the current lq-text trace
flags. You can add several flags at a time by combin-
ing them with bitwise or. If you do, the return value
may be hard to decipher, although since the return

value is primarily of intere‚ to internal liblqtext routines, this probably doesn’t matter.
Z Returns: non-zero if any of the the given flags were set. Z See Also: LQT_Trace‡ (over-
leaf); LQT_UnSetTraceFlag‡ (p. 29); LQT_GetTraceFlags‡ (opposite).

Tracing
../liblqtext/trace.c

API char *
LQT_SetTraceFlagsFromString(theString)

char *theString; Attempts to set the lq-text trace flags by reading a
‚ring representation of them. The ‚ring mu‚ be

in the format produced by LQT_GetTraceFlagsAsString; in other words, a sequence of
words separated by the vertical bar. The various flag values are defined in the <lqtrace.h>
header file, and may be combined (using bitwise or) in any combination ¶ If the return
value points to anul byte, the end of the ‚ring was reached without error; otherwise, it is
up to the caller to determine whether the extra unconverted text was expe·ed.
Z Returns: a pointer to the fir‚ unconverted chara·er in the given ‚ring Z See Also:

LQT_AddActionOnClose Database/Database, p. 3
LQT_GetGivenTraceFlagsAsString Tracing, p. 26
LQT_GetTraceFlags Tracing, p. 26
LQT_SetTraceFlag Tracing, p. 27
LQT_SetTraceFlagsFromString Tracing, p. 27
LQT_Trace Tracing, p. 28
LQT_UnSetTraceFlag Tracing, p. 29

LQT_Trace
‡ (overleaf); LQT_SetTraceFlag‡ (previous page); LQT_GetTraceFlagsAs-

String
‡ (previous page); LQT_StringToFlags‡ (below).

Tracing
../liblqtext/rdflags.c

API char *
LQT_StringToFlags(String, Flagp, WordFlagNamePairArray, Separator)

char *String;
unsigned long *Flagp;
t_FlagNamePair *WordFlagNamePairArray;
char *Separator;

Tries to reverse the operation of LQT_FlagsToString. In other words, LQT_-
StringToFlags takes a ‚ring which it assumes to be a sequence of names of flags found
in the given FlagNames array, separated by the given con‚ant ‚ring, and returns the bit-
wise ‘or’ of the Value members corresponding to the Names that are found. ¶ In addition,
a leading + or - is used to indicate that the following flags are to be added (with bitwise or)
or removed (usinbg bitwise and on their negation) from the result. Z Returns: a pointer to
the fir‚ unconverted chara·er in String, and the a·ual value in Flagp Z See Also:
LQT_StringToWordFlags

‡ (below); LQT_WordFlagsToString‡ (opposite).

Tracing
../liblqtext/rdflags.c

API char *
LQT_StringToWordFlags(db, String, Flagp)

t_LQTEXT_Database *db;
char *String;
unsigned long *Flagp;

Tries to reverse the operation of LQT_-
WordFlagsToString. In other words, LQT_-
StringToWordFlags takes a ‚ring which it
assumes to be a sequence of names of flags as

defined in the header file <wordrules.h> separated by LQTpWordFlagSep (a comma), and
returns the bitwise ‘or’ of the Word Flags corresponding to the Names that are found.
Z Returns: a pointer to the fir‚ unconverted chara·er in String, and the a·ual value in
Flagp Z See Also: LQT_StringToWordFlags‡ (above); LQT_WordFlagsToString‡ (oppo-
site).

Tracing
../liblqtext/trace.c

API void
LQT_Trace(Flags, Format, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

t_TraceFlag Flags;
char *Format;

Prints diagno‚ic messages. The Flags argument
mu‚ be one or more flags taken from <lqtrace.h>
and combined with bitwise or. If one of more of the

given Flags is set in the current lq-text trace flags, the remainder of the arguments are pas-
sed to fprintf ¶ For e‹ciency, it may be be‚ to use LQT_TraceFlagsSetfir‚ to determine
whether to call LQT_Trace, as the former is likely to be implemented as a short macro in
<lqtrace.h> , but currently LQT_Trace cannot be so implemented. ¶ Each line of trace out-
put is preceded by the current program name, the word ‘trace’, and a ‚ring representation

LQT_GetTraceFlagsAsString Tracing, p. 27
LQT_SetTraceFlag Tracing, p. 27
LQT_StringToFlags Tracing, p. 28
LQT_StringToWordFlags Tracing, p. 28
LQT_Trace Tracing, p. 28
LQT_WordFlagsToString Tracing, p. 29

of one or more of those flags in the Flags argument to LQT_Tracewhich are set in the cur-
rent lqtext trace flags. Z See Also: LQT_SetTraceFlag‡ (p. 27); LQT_UnSetTraceFlag‡

(below); LQT_SetTraceFlagsFromString‡ (p. 27).

Tracing
../liblqtext/trace.c

LIBRARY int
LQTp_TraceFlagsSet(QueryFlags)

t_TraceFlag QueryFlags;

Determines whether any of a particular group of
trace flags are set; if so, a non-zero value is returned,
otherwise zero. The flags may have been or’d
together, and are defined in the <lqtrace.h> header

file.
For each such flag, all of the bits set in the flag have been be set in the argument to LQT_-
TraceFlags in order for it to be considered as being set. Z Returns: non-zero if one or
more flags satisfies the con‚raints Z Notes: This may be implemented as a macro; the pro-
totype shown may in that case have a di⁄erent name. Z See Also: LQT_Trace‡ (opposite);
LQT_SetTraceFlag

‡ (p. 27); LQT_UnSetTraceFlag‡ (below); LQT_GetTraceFlags‡

(p. 26).

Tracing
../liblqtext/trace.c

API int
LQT_UnSetTraceFlag(theFlag)

t_TraceFlag theFlag;

The given flag is removed from the current lq-text
trace flags. You can combine multiple flag values
using bitwise or. ¶ This routine can be used in con-
jun·ion with LQT_GetTraceFlags to unset all of

the current flags. Z Returns: 1 if any of the given flags were set, and 0 otherwise. Z Errors:
An attempt to unset flags that were not set produces an error of type E_WARN|E_-
INTERNAL. Z See Also: LQT_Trace‡ (opposite); LQT_GetTraceFlags‡ (p. 26); LQT_Set-
TraceFlagsFromString

‡ (p. 27).

Tracing
../liblqtext/prflags.c

API char *
LQT_WordFlagsToString(db, Flags)

t_LQTEXT_Database *db;
t_WordFlags Flags;

Returns a printable ‚ring representation of the
given WordFlags, intended for humans to read as
well as for use with the LQT_WordFlagsToString
fun·ion. The flags are defined in <wordrules.h> and
are explained under the Language category.

Z Returns: a pointer to a ‚atically allocated ‚ring. Z Errors: There mu‚ be enough mem-
ory to allocate the result, which grows automatically as needed, but never shrinks. Z See
Also: LQT_StringToWordFlags‡ (opposite); LQT_FlagsToString‡ (p. 25).

LQT_FlagsToString Tracing, p. 25
LQT_GetTraceFlags Tracing, p. 26
LQT_SetTraceFlag Tracing, p. 27
LQT_SetTraceFlagsFromString Tracing, p. 27
LQT_StringToWordFlags Tracing, p. 28
LQT_Trace Tracing, p. 28
LQT_UnSetTraceFlag Tracing, p. 29

Input

Currently, this category is thinly populated; it contains a useful routine for reading a
match in the format produced by all the lq-text clients, and returning a data ‚ruc-
ture that can be used with other fun·ions.

The Output category contains a routine that does the inverse operation, taking the
data ‚ru·ure and printing the information to a ‚dio ‚ream.

LQT_StringToMatch 31

Input
../liblqtext/rmatch.c

API char *
LQT_StringToMatch(db, Severity, theString, theMatchpp)

t_LQTEXT_Database *db;
int Severity;
char *theString;
t_MatchStart **theMatchpp;

Converts a ‚ring representation of a match to a t_-
Match obje·. Leading and trailing white space on
the line is ignored. ¶ The match is considered to
consi‚ of a number of ascii decimal numbers fol-

lowed by a file name. The numbers are, in this order, the number of words matched, the
block within the file, the word within the block, and the File Identifier (t_FID). There
may be an optional filename after the fid. ¶ If the fid is given as zero, there mu‚ be a
filename, and this is given as an argument to LQT_NameToFID to complete the fid entry
in the match. Z Notes: The returned Match is contained in a ‚atic bu⁄er and should not
be freed or overwritten. You mu‚ make a copy if you need to retain the information over
successive calls to LQT_StringToMatch. The FileName field of the Match will point
either into the middle of the given ‚ring, or to an internal ‚atic bu⁄er, or, in the case that
the given fid was invalid, will be null ¶ A ‚atic internal bu⁄er is retained containing
the previous result of LQT_NameToFID, for e‹ciency in the common case that there are
several matches in a row from the same document. Z Returns: 1. null if there was no
error; in that case, *theMatchpp is set to either a pointer to a Match, or null if the line
didn’t contain a match. 2. On error, a ‚ring describing the problem is returned.

Output

This category contains a routine for printing a match in the same format as the
lq-text clients. It is typically several times fa‚er than using printf.

LQT_fPrintOneMatch 33

Output
../liblqtext/pmatch.c

API void
LQT_fPrintOneMatch(db, theFile, Fir‚Number, FileInfo, WordPlace)

t_LQTEXT_Database *db;
FILE *theFile;
int Fir‚Number;
t_FileInfo *FileInfo;
t_WordPlace *WordPlace;

Prints a single match to the given ‚dio file descrip-
tor, in a form that will subsequently be under‚ood
by the routines and programs that read matches.
Z Notes: Not all the information ‚ored in the data-
base index for each match is printed by LQT_-

fPrintOneMatch. A future release will allow you to change the print format (using a
Name Space).

Database/Documents

¶ The term ‘Documents’ is used to refer to the files that have been indexed, as opposed
to the files that make up the a·ual database. Fun·ions in the Database/Documents
category thus deal with accessing the indexed documents.

LQT_De‚royFileInfo 35
LQT_FindFile 35
LQT_GetFilterName 35
LQT_GetFilterType 36
LQT_GetMaxFID 36
LQT_GetMaxOrAllocateFID 36
LQT_UnpackAndOpen 36
LQT_WriteCurrentMaxFID 36

Database/Documents, Memory
../liblqtext/fileinfo.c

API void
LQT_DestroyFileInfo(db, FileInfo)

t_LQTEXT_Database *db;
t_FileInfo *FileInfo;

Frees the memory used by the given FileInfo. Nei-
ther the database nor the file described by the File-
Info is a⁄e·ed; LQT_DestroyFileInfo frees any
internal data ‚ru·ures associated with the FileInfo
and then frees the FileInfo itself. After calling LQT_-

DestroyFileInfo, the FileInfo pointer is no longer valid, and should not be derefer-
enced. Z See Also: LQT_NameToFID‡ (p. 14); LQT_FIDToFileInfo‡ (p. 9).

Database/Documents
../liblqtext/docpath.c

API char *
LQT_FindFile(db, Name)

t_LQTEXT_Database *db;
char *Name;

Returns a pointer to a full pathname, given a
filename as ‚ored in the lq-text File index. The cur-
rent database DocPath is searched, and if that fails,
an attempt is made to find the file with .gz
appended, then with .Z appended. ¶ The returned

‚ring points to a ‚atic bu⁄er, and should not be freed. The bu⁄er is overwritten on suc-
cessive calls to LQT_FindFile(). Z Bugs: Does not under‚and the archive name notation,
archive(filename).

Database/Documents
../liblqtext/filters.c

LIBRARY char *
LQT_GetFilterName(db, FileInfo)

t_LQTEXT_Database *db;
t_FileInfo *FileInfo;

Returns a short name describing the file type associ-
ated with the given file. The value is ‚atic, and
should not be freed by the caller. Z See Also:
LQT_GetFilterType

‡ (overleaf).

LQT_FIDToFileInfo Database/Retrieval, Database/Docu-
ments, p. 9

LQT_GetFilterType Database/Documents, p. 36
LQT_NameToFID Database/Retrieval, Database/Docu-

ments, p. 14

Database/Documents
../liblqtext/filters.c

LIBRARY int
LQT_GetFilterType(db, FileInfo, StatBuf)

t_LQTEXT_Database *db;
t_FileInfo *FileInfo;
‚ru· ‚at *StatBuf;

Determines the appropriate filter to use to read the
file represented by the given FileInfo; this is an
internal routine and will be replaced in the next
release. Z See Also: LQT_UnpackAndOpen ‡

(below).

Database/Documents
../liblqtext/getfid.c

API t_FID
LQT_GetMaxFID(db)

t_LQTEXT_Database *db;

Returns the large‚ allocated fid. Z Returns: 1. the
large‚ fid already allocated. 2. 1 if no fids have
been allocated. Z Errors: as for LQT_ReadBlock,
LQT_OpenDataBase.

Database/Documents
../liblqtext/setfid.c

API t_FID
LQT_GetMaxOrAllocateFID(db, WriteCurrent)

t_LQTEXT_Database *db;
int WriteCurrent;

Allocates a new fid, and writes the new value to
disk. If the ‘WriteCurrent’ argument is zero, the
value is only written in one on every 1,000 calls.

Z See Also: LQT_SyncDatabase ‡ (p. 5).

Database/Documents
../liblqtext/unpack.c

API int
LQT_UnpackAndOpen(db, FileName)

t_LQTEXT_Database *db;
char *FileName;

Tries to open the named file, using compress or gun-
zip as necessary. Can append a .Z or .gz to the file
name. Currently, LQT_UnpackAndOpen makes a
copy of a file if necessary; a future version may cre-
ate a pipe, and the interface will change. Z Returns:

1. an open file descriptor on success; 2. –1 if the file couldn’t be opened. Z See Also:
LQT_FindFile

‡ (previous page); LQT_MakeInput‡ (p. 51).

Database/Documents
../liblqtext/setfid.c

API void
LQT_WriteCurrentMaxFID(db)

t_LQTEXT_Database *db;

Writes the cached value of the large‚ allocated fid
to disk. This routine is regi‚ered by LQT_-
OpenDatabase so that it is called automatically by
LQT_CloseDatabase. ¶ It may also be useful to call

it dire·ly for the purpose of debugging a new lq-text client that updates the database, for
example when running under a database. Z See Also: LQT_WriteCurrentMaxWID‡

(p. 56); LQT_SyncDatabase ‡ (p. 5); LQT_CloseDatabase‡ (p. 4).

LQT_CloseDatabase Database/Database, p. 4
LQT_FindFile Database/Documents, p. 35
LQT_MakeInput Database/Update, Database/Documents,

p. 51
LQT_SyncDatabase Database/Database, p. 5
LQT_UnpackAndOpen Database/Documents, p. 36
LQT_WriteCurrentMaxWID Database/Words, p. 56

Database/Dynamic Hashing

Fun·ions in this category are related to manipulating the dynamic hashing data-
base that lq-text relies upon. A dynamic hashing database provides a key to value
mapping; the key can be any binary data, and so can the value.

Two dynamic hashing databases are used by lq-text: the fir‚ is used to map a word
into a wid, that is, into a Word IDentifier number. The second is used to map a
filename into a fid, that is, into a File IDentifier.

You can configure lq-text to use any of a number of di⁄erent dynamic hashing
packages; ndbm is supplied with mo‚ Unix sy‚ems; Berkeley’s ‘db’ package is
included with lq-text, along with Ozan Yigit’s ‘sdbm’ package. Whichever package
you use, the result is essentially the same, except that some packages are fa‚er or
more reliable than others. For large databases (say, several hundred megabytes), you
will probably need to use the db package, since it has fewer size limits than mo‚ oth-
ers.

The individual dynamic hashing packages provide documentation on the various
routines, such as dbm_fetch and dbm_store, that you can use with the data-
bases. The lqword sample client uses routines that iterate over all entries in a data-
base, one by one.

LQT_CloseKeyValueDatabase 37
LQT_OpenKeyValueDatabase 38
LQT_SyncAndCloseAllKeyValueDatabases 38
LQTp_CreateEmptyKeyValueDatabase 38

Database/Dynamic Hashing,
Database/Files
../liblqtext/smalldb.c

ARGSUSED*/
API int
LQT_CloseKeyValueDatabase(db)

DBM *db;

This currently does nothing, since the Key Value
Databases are kept open. If the library is compiled
with dbm in‚ead of ndbm, or with the cache dis-
abled, LQT_CloseKeyDatabase becomes a·ive, so
it should be paired with every call to LQT_-

OpenKeyValueDatabase Z See Also: LQT_SyncAndCloseAllKeyValueDatabases‡

(overleaf).

LQT_SyncAndCloseAllKeyValueDatabases Data-
base/Dynamic Hashing, Database/Files, p. 38

Database/Dynamic Hashing,
Database/Files

../liblqtext/smalldb.c

API DBM *
LQT_OpenKeyValueDatabase(db, FilePrefix)

t_LQTEXT_Database *db;
char *FilePrefix;

Opens an ndbm-‚yle database of the given name,
creating it if the current database modes allow it.
The fun·ion keeps a cache of open databases, so

that if there is already an open database of the given name, its handle is simply returned.
¶ Opening a Key Value Database involves several file sy‚em accesses and using malloc to
obtain memory, so it’s much better to use the cached values. It is even better ‚ill to keep
frequently used Key Value Databases open, for example in a ‚atic variable, and to close
them only when the database is closed. Z Returns: A handle (usually a dbm * pointer) to
the named Key Value Database. Z Errors: If the underlying ndbm-‚yle database couldn’t
be opened, a fatal error is produced (E_FATAL|E_SYS) indicating the problem. One pos-
sible cause of this is that $home/lqtextdir isn’t a dire·ory, or doesn’t exi‚, and
$lqtextdir isn’t set to point to a suitable alternate dire·ory. Another possible problem
is that a previous run of lqaddfile failed, and left the Key Value Databases locked for writ-
ing; the be‚ thing to do in this case is to run the lqclean program and ‚art again. Z See
Also: LQT_CloseKeyValueDatabase‡ (previous page); LQT_OpenDatabase ‡ (p. 5);
LQT_AddActionOnClose

‡ (p. 3); LQT_SyncDatabase ‡ (p. 5).

Database/Dynamic Hashing,
Database/Files

../liblqtext/smalldb.c

API int
LQT_SyncAndCloseAllKeyValueDatabases(db)

t_LQTEXT_Database *db; Closes all Key Value Databases that have been
opened, after writing any pending data to disk.

¶ This fun·ion is regi‚ered automatically as an a·ion to be performed when a database
is closed or on a call to LQT_Sync, and should not normally need to be called dire·ly. The
return value and argument are for compatibility with LQT_AddActionOnClose. The
argument mu‚ be a null pointer, for future compatibility. Z See Also: LQT_OpenKey-
ValueDatabase

‡ (above); LQT_AddActionOnClose ‡ (p. 3); LQT_CloseDatabase‡ (p. 4).

Database/Dynamic Hashing,
Database/Files

../liblqtext/smalldb.c

LIBRARY char *
LQTp_CreateEmptyKeyValueDatabase(db, Dire·ory, prefix)

t_LQTEXT_Database *db;
char *Dire·ory;
char *prefix;

Some versions of dbm or ndbm provided with vari-
ous Unix sy‚ems do not automatically create a new
dbm file, even when asked to; it is necessary to cre-
ate the file with the open(2) or creat(2) sy‚em calls.

The original Unix dbm library was like this. ¶ This fun·ion creates the necessary files, in
the given Dire·ory; the files will have names beginning with the given Prefix, and

LQT_AddActionOnClose Database/Database, p. 3
LQT_CloseDatabase Database/Database, p. 4
LQT_CloseKeyValueDatabase Database/Dynamic Hashing,

Database/Files, p. 37
LQT_OpenDatabase Database/Database, p. 5
LQT_OpenKeyValueDatabase Database/Dynamic Hashing,

Database/Files, p. 38
LQT_SyncDatabase Database/Database, p. 5

depending on the version of ndbm in use, may have a su‹x such as .db; bsd db uses a
single file, but mo‚ other implementations use two, one called Prefix.dir and one called
Prefix.pag. ¶ This routine is called automatically by LQT_OpenKeyValueDatabasewhen
necessary, but is made available for general use for convenience. Z Bugs: LQTp_-
CreateEmptyKeyValueDatabase should be in liblqutil in‚ead. Z See Also: LQT_OpenKey-
ValueDatabase

‡ (opposite).

LQT_OpenKeyValueDatabase Database/Dynamic Hashing,
Database/Files, p. 38

Database/Files

The term ‘Documents’ is used to refer to the files that have been indexed, as opposed to
the files that make up the a·ual database. Fun·ions in the Database/Files category
thus deal with accessing and manipulating the files in the lq-text database dire·ory
($lqtextdir).

The fun·ions in this category are at a low level; usually, there is a higher level
routine that will do what you want, unless you are modifying the internals of
liblqtext, or are writing complex database update code.

Note that the category Utilities/Files also exi‚s, and provides fun·ions such as
LQU_IsDir for determining whether a given ‚ring is the name of a dire·ory.

LQT_BlockIsCached 41
LQT_FlushBlockCache 42
LQT_FlushOneBlockFromCache 42
LQT_ReadBlock 42
LQT_ReadFilterTable 42
LQT_WriteBlock 43
LQT_WriteVersionToDatabase 43
LQTpFlushWIDCache 43

Database/Files,
Database/Physical
../liblqtext/pbcache.c

API int
LQT_BlockIsCached(db, Block)

t_LQTEXT_Database *db;
unsigned long Block;

Determine whether the block at a given o⁄set in the
data file is in the block bu⁄er cache or not. Since
LQT_ReadBlock returns a pointer into the cache, it
is a fatal error (E_BUG) if LQT_WriteBlock is called
for a block that is not cached. ¶ The cache is always

large enough to hold at lea‚ the la‚ two blocks returned by LQT_ReadBlock. This is ju‚
enough to ensure that the NextO⁄set field in a block’s header can be filled in after allocat-
ing the next block in a chain. Z Returns: Non-zero if the block is cached, and zero other-
wise. Z Errors: Fatal error if the main data file can’t be opened or created. Z Notes: As a
side-e⁄e·, the CurrentBlock variable in pbcache.c is set to point to the cached block; this
is used internally by the library routines in that file. Z See Also: LQT_ReadBlock ‡ (over-
leaf); LQT_WriteBlock‡ (p. 43).

LQT_ReadBlock Database/Files, Database/Physical, p. 42 LQT_WriteBlock Database/Files, Database/Physical, p. 43

Database/Files,
Database/Physical

../liblqtext/pbcache.c

LIBRARY int
LQT_FlushBlockCache(db)

t_LQTEXT_Database *db;

Writes any pending dirty blocks to the disk. Copies
of the blocks are retained in memory, however, until
LQT_CloseDatabase is called, and will be found by
LQT_BlockIsCached and hence by LQT_-

ReadBlock if an attempt is made to read them again. ¶ When a database is opened, LQT_-
OpenDatabase adds LQT_FlushBlockCache as an a·ion to be performed automati-
cally whenever the database is flushed or closed. It should not be necessary to call this
code dire·ly from outside the library, and it is made available primarily to aid in debug-
ging. Z Errors: Fatal error (E_BUG) if the cache is dirty in read-only mode. Z See Also:
LQT_AddActionOnClose

‡ (p. 3); LQT_OpenDatabase ‡ (p. 5); LQT_SyncDatabase ‡

(p. 5); LQT_CloseDatabase‡ (p. 4).

Database/Files,
Database/Physical

../liblqtext/pbcache.c

LIBRARY int
LQT_FlushOneBlockFromCache(db)

t_LQTEXT_Database *db;

If there any data blocks that are waiting to be writ-
ten out to disk, LQT_FlushOneBlockFromCache
will write one of them out. ¶ This fun·ion is inter-
nal to lq-text and users of the Physical layer of the

database. Z Errors: Fatal error (E_BUG) if the cache is dirty in read-only mode. Z See Also:
LQT_FlushBlockCache

‡ (above).

Database/Files,
Database/Physical

../liblqtext/pbcache.c

API unsigned char *
LQT_ReadBlock(db, O⁄set, WID)

t_LQTEXT_Database *db;
unsigned long O⁄set;
t_WID WID;

Reads the block at the given byte o⁄set, and returns
a pointer to the data. The data is ‚ored in a cache, so
it is important not to try and write beyond the end
of the block or group of blocks as determined by
LQT_ExtendBlock or LQT_FindFreeBlock. The

block mu‚ be written out with LQT_WriteBlock if it has changed. In addition, the
block is not locked in memory, but LQT_ReadBlock ensures that it is safe to read at lea‚
one other block before writing this one out with LQT_WriteBlock. Z Returns: A pointer
to the data Z Notes: Attempts to read beyond the end of the data file will extend the data-
base automatically. The data will be initialised to zero, except for the block headers,
whose NumberOfBlocks field will all be set to one. Z Errors: Fatal error (E_BUG) if the
database can’t be opened or created. Z See Also: LQT_ExtendBlock ‡ (p. 46);
LQT_FindFreeBlock

‡ (p. 46); LQT_WriteBlock‡ (opposite).

Database/Files,
Database/Defaults

../liblqtext/filtertb.c

API int
LQT_ReadFilterTable(db)

t_LQTEXT_Database *db;

Reads the filter table into memory if one was speci-
fied. The filter table li‚s the file types that can be
indexed, and gives an index filter for each of them.
¶ If there is no ‘filtertable’ entry in the database con-

figuration file, a built-in li‚ of defaults is used. Z Returns: zero on success. Z See Also:

LQT_AddActionOnClose Database/Database, p. 3
LQT_CloseDatabase Database/Database, p. 4
LQT_ExtendBlock Database/Physical, p. 46
LQT_FindFreeBlock Database/Physical, p. 46
LQT_FlushBlockCache Database/Files, Database/Physical,

p. 42
LQT_OpenDatabase Database/Database, p. 5
LQT_SyncDatabase Database/Database, p. 5
LQT_WriteBlock Database/Files, Database/Physical, p. 43

LQT_GetFilterType
‡ (p. 36).

Database/Files,
Database/Physical
../liblqtext/pbcache.c

API void
#ifdef ASCIITRACE
LQTp_WriteBlock(db, theFile, theLine, Block, Data, Length, theWID)

t_LQTEXT_Database *db;
char *theFile;
int theLine;

#else
LQT_WriteBlock(db, Block, Data, Length, theWID)

t_LQTEXT_Database *db;
#endif

unsigned long Block;
unsigned char *Data;
int Length;
t_WID theWID;

Writes the given block to the database. A·ually the block is saved in the cache, and if it
was originally obtained with LQT_ReadBlock it’s already in the cache, so LQT_-

WriteBlock simply marks it as dirty, needing to be saved. If you change data in a block
without callingLQT_WriteBlock, the changes usually won’t be written to disk (unless an
adjacent block in the cache is written). ¶ The block mu‚ have a valid header; if the
block’s length field is larger than the Length argument, the extra blocks are marked as
free. The header is described in <blkheader.h> . Z Errors: Format or consi‚ency errors are
generally fatal. Attempting to write a block not in the cache will produce a warning.
Z See Also: LQT_FindFreeBlock‡ (p. 46); LQT_ReadBlock ‡ (opposite); LQT_Wri-
teBlock

‡ (above).

Database/Files
../liblqtext/lqwverno.c

API void
LQT_WriteVersionToDatabase(db)

t_LQTEXT_Database *db;

Writes the liblqtext library version to the database
so that LQT_CheckDatabaseVersionwill accept it.
This routine is called automatically when a new
lq-text database is created. Z See Also:

LQT_CheckDatabaseVersion
‡ (p. 4).

Database/Files
../liblqtext/wordinfo.c

LIBRARY int
LQTpFlushWIDCache(db)

t_LQTEXT_Database *db;

Writes any pending entries in thewidfile cache out
to disk. This mu‚ be done before closing the data-
base or exiting the running program if any changes
have been made. ¶ When a database is opened,

LQTpFlushWIDCache is regi‚ered as an a·ion to be performed on an LQT_-
CloseDatabase or LQT_SyncDatabase, so it should not be necessary to call this fun·ion
dire·ly. ¶ The ignored argument is for compatibility with LQT_AddActionOnClose, as
is the return value. Z See Also: LQT_SyncDatabase ‡ (p. 5); LQT_CloseDatabase‡ (p. 4);

LQT_CheckDatabaseVersion Database/Database, p. 4
LQT_CloseDatabase Database/Database, p. 4
LQT_FindFreeBlock Database/Physical, p. 46
LQT_GetFilterType Database/Documents, p. 36
LQT_ReadBlock Database/Files, Database/Physical, p. 42
LQT_SyncDatabase Database/Database, p. 5
LQT_WriteBlock Database/Files, Database/Physical, p. 43

LQT_AddActionOnClose
‡ (p. 3).

LQT_AddActionOnClose Database/Database, p. 3

Database/Physical

Routines in this category manipulate the database at the raw file level; they deal
with data blocks on the hard disk, or with ‚reams of raw bytes.

The compressed numbers package is also included in this category; although it is
in principle useful outside of lq-text, and has in fa· been used elsewhere several times
in the pa‚, the routines in h/numbers.h and liblqtext/numbers.c usually need to be
modified, as they are very low level.

You should be warned that modifying the source of any of these routines, or using
them in any way incorre·ly, is likely to lead to corruption in the databases you create
or manipulate: the integrity of an lq-text database depends heavily on these routines.

This documentation is intended to be enough so that you can work with exi‚ing
code that uses these fun·ions; you should be prepared to use the source to undersand
more if you need to use them.

LQT_BlockIsFree 45
LQT_ExtendBlock 46
LQT_FindFreeBlock 46
LQT_FlushBlock 46
LQT_SetBlockStatus 47
LQT_sReadNumber 47
LQT_sWriteNumber 47

Database/Physical
../liblqtext/pbcache.c

API int
LQT_BlockIsFree(db, O⁄set)

t_LQTEXT_Database *db;
unsigned long O⁄set;

Determine the ‚atus of the block at a given byte o⁄-
set from the ‚art of the data overflow file (data). An
external file, freeli‚, is kept in the database direc-
tory; this file uses a single bit to represent the ‚atus
of each block, either in use or free. If the freeli‚ file

is removed, subsequent attempts to write to the database will fail. Read-only access will
‚ill work unless lqtrace_readafterwrite is set, whereupon LQT_ReadBlock checks
the ‚atus of each block before returning it; it is an error to attempt to read an unallocated
block, although this not normally checked, for performance reasons. Z Returns: Non-
zero if the block is available, zero if it is free Z Notes: The fir‚ few blocks are reserved for
‚oring information about the database; they are marked as used automatically whenever
a database is created. ¶ The freeli‚ file can be rebuilt by the lqmkfreeli‚ program. ¶ The
te‚ program ‘free’ contains examples of using the Block Status fun·ions LQT_-

BlockIsFree and LQT_SetBlockStatus. It can also be used to edit the contents of the
freeli‚ file. Z Errors: Fatal error if the freeli‚ file could not be opened Z See Also:

LQT_SetBlockStatus
‡ (p. 47); LQT_FindFreeBlock‡ (below); LQT_ReadBlock ‡ (p. 42).

Database/Physical
../liblqtext/pbcache.c

API void
LQT_ExtendBlock(db, O⁄set, BlockCountp, BytesWanted)

t_LQTEXT_Database *db;
unsigned long O⁄set;
unsigned int *BlockCountp;
unsigned long BytesWanted;

LQT_ExtendBlock marks as many blocks as pos-
sible following the given byte O⁄set as being used,
and increments the unsigned int pointed to by
BlockCountp by the number of blocks added. The

number of blocks added is such that a single contiguous ‚retch of data ‚arting at the
given O⁄set, and continuing for the number of blocks in *BlockCountp, does not cross
an LQT_ReadBlock cache boundary. ¶ If the BytesWanted argument is non-zero, the
total number of blocks in BlockCountp when LQT_ExtendBlock returns will not be
more than one block greater than BytesWanted bytes. Z Notes: BlockCountp mu‚ be
greater than zero on entry to LQT_ExtendBlock. Z Returns: The total number of blocks
in *BlockCountp Z See Also: LQT_FindFreeBlock‡ (below); LQT_SetBlockStatus‡

(opposite).

Database/Physical
../liblqtext/pbcache.c

API unsigned long
LQT_FindFreeBlock(db, WID, BlockLengthp, BytesWanted)

t_LQTEXT_Database *db;
t_WID WID;
unsigned int *BlockLengthp;
unsigned long BytesWanted;

Allocates a block from the free li‚, and marks it as
in use. The block is at lea‚ blocksize bytes long,
and may be longer, as contiguous free blocks are
combined to make a single longer block as long as

will fit in a single cache entry. If the BytesWanted argument is non-zero, the block will
not be more than blocksize bytes longer than than BytesWanted bytes. Since LQT_-
FindFreeBlock does not a·ually read the data from the disk (or cache), it is up to the
caller to ensure that LQT_ReadBlock is called, and that the resulting block’s header is
filled in with NumberOfBlocks equal to the value that LQT_FindFreeBlock ‚ored in
BlockLengthp. Z Returns: the byte o⁄set in the data file of the block allocated, and also
the number of blocks allocated (in BlockLengthp). Z See Also: LQT_BlockIsCached ‡

(p. 41); LQT_BlockIsFree‡ (previous page); LQT_SetBlockStatus‡ (opposite).

Database/Physical
../liblqtext/wblock.c

API void
LQT_FlushBlock(db, Block, ByteCount, NextO⁄set, La‚Start, WID)

LQT_BlockIsCached Database/Files, Database/Physical,
p. 41

LQT_BlockIsFree Database/Physical, p. 45
LQT_FindFreeBlock Database/Physical, p. 46
LQT_ReadBlock Database/Files, Database/Physical, p. 42
LQT_SetBlockStatus Database/Physical, p. 47

t_LQTEXT_Database *db;
unsigned char *Block;
int ByteCount;
unsigned long *NextO⁄set, *La‚Start;
t_WID WID;

Writes out the given block to the cache. This is
really the same as LQT_WriteBlock, except that it
is used for the la‚ block in each chain of matches.

Database/Physical
../liblqtext/pbcache.c

API void
LQT_SetBlockStatus(db, O⁄set, Status)

t_LQTEXT_Database *db;
unsigned long O⁄set;
int Status;

Set the ‚atus of the block at a given byte o⁄set in
the data file. ¶ Status mu‚ be either set_block_-
as_used or set_block_as_free. In the former
(used) case, the block is marked as being in use,
and can be brought into the cache with

LQT_ReadBlock. In the latter case (free), the block is marked as being available for
reuse. Since LQT_SetBlockStatus does not access the a·ual data, it does not have access
to the block’s length. It is therefore the caller’s responsibility to call LQT_-
SetBlockstatus for each contiguous block when a block header’s NumberOfBlock field
is greater than one. Z Notes: This routine was called 2,785,338 times when indexing Shak-
espeare’s complete works. To try and speed things up, LQT_SetBlockstatus performs as
few checks as possible. Z See Also: LQT_BlockIsFree‡ (p. 45).

Database/Physical
../h/numbers.h

INLINE int
LQT_sReadNumber(Sp, Resultp, StartOfBu⁄er, LengthOfBu⁄er)

unsigned char **Sp;
unsigned long *Resultp;
unsigned char *StartOfBu⁄er;
unsigned int LengthOfBu⁄er;

Reads a number from its compressed binary repre-
sentation ‚ored the given ‚ring. The pointer
pointed to by Sp is advanced to point to the fir‚
unread byte of the bu⁄er. The retrieved number is

‚ored in the variable pointed to by the given Resultp argument. Z Returns: 1. –1 if the
entire number was not read, because it wasn’t all included in the given ‚ring; in this case,
the pointer referred to by Sp will have been advanced by the number of bytes read, but
the return value is useless. 2. Zero is returned if the number was read successfully. Z See
Also: LQT_sWriteNumber‡ (below).

Database/Physical
../h/numbers.h

INLINE int
LQT_sWriteNumber(Sp, Number, Base, Maxlen)

unsigned char **Sp;
unsigned long Number;
unsigned char *Base;
unsigned int Maxlen;

Writes a compressed binary representation of the
given Number into the given ‚ring. The pointer
pointed to by Sp is advanced to point to the fir‚
unwritten byte of the bu⁄er. Z Returns: 1. –1 if the

‚ring doesn’t fit; in this case, the pointer referred to by Sp will have been advanced by the
amount of the number that fitted; 2. Zero is returned if the number was written

LQT_BlockIsFree Database/Physical, p. 45 LQT_sWriteNumber Database/Physical, p. 47

successfully. Z Notes: This fun·ion and the companion LQT_sReadNumber are central
to the operation of the lq-text database package. If it were not for the use of compressed
numbers, the index would be too large to be useful. ¶ The fun·ion is designed to work
be‚ with small numbers; a number less than 127 is written out in a single byte, for
example, and a number less than 16383 is written in two bytes. For this reason, LQT_-
sWriteNumber is mo‚ e⁄e·ively used when writing a sorted sequence of numbers, as
then you can write only the di⁄erence between successive values, saving space. This
form of delta coding is used extensively by lq-text. Z See Also: LQT_sReadNumber‡ (pre-
vious page).

LQT_sReadNumber Database/Physical, p. 47

Database/Update

These routines are for modifying an lq-text database. You may need to link again‚
src/lqtext/wordtable.o to use some of them in the current release. See the lqaddfile
client for examples of using some of them.

LQT_AddWordPlaces 49
LQT_DeleteWordFromIndex 49
LQT_DeleteWordPlaces 50
LQT_La‚BlockInChain 50
LQT_MakeFileInfo 50
LQT_MakeInput 51
LQT_MakeWordInfoBlock 51
LQT_MakeWordInfoBlockHeader 51
LQT_PutWordInfoIntoIndex 52
LQT_RemoveFileInfoFromIndex 52
LQT_RenameFileInIndex 52
LQT_SaveFileInfo 52
LQT_SetLa‚BlockInChain 53
LQT_SortWordPlaces 53
LQT_UpdateWIDMatchCount 53
LQT_WriteWordAndWID 54
LQT_WriteWordPlaces 54
LQT_Writepblock 54
LQTp_FlushLa‚BlockCache 54

Database/Update,
Database/Physical
../liblqtext/wpblock.c

API unsigned long
LQT_AddWordPlaces(db, WordPlaces, WID, O⁄set, NumberToWrite)

t_LQTEXT_Database *db;
t_WordPlace *WordPlaces;
t_WID WID;
unsigned long O⁄set;
unsigned long NumberToWrite;

Adds the given Word Places to the database for the
given wid. This routine is fairly low-level, and is
made available in the api for e‹ciency. You should
not attempt to use it without looking at examples in
the lq-text clients that update the database, and also

reading the source of the fun·ion itself. Z Returns: The number of places written.

Database/Update,
Database/Words
../liblqtext/wordinfo.c

API int
LQT_DeleteWordFromIndex(db, Word)

t_LQTEXT_Database *db;
char *Word;

Deletes the given word and associated data from the
database. The wid index entry for the LQT_-
WIDToWord fun·ion entry is retained, as is the
widindex file record, with a match count of zero. If
the word should appear in some subsequently

indexed file, this space is reclaimed. Z Returns: 1. zero on success 2. –1 on error Z Notes:
See LQC_UnIndexFile in the lqunindex client for an example of using this fun·ion.

Database/Update,
Database/Words

../liblqtext/pbcache.c

API void
LQT_DeleteWordPlaces(db, Fir‚Block, WID)

t_LQTEXT_Database *db;
unsigned long Fir‚Block;
t_WID WID;

Deletes the word places from disk for a given wid,
marking the corresponding data blocks as
unused.<P> ¶ The given Fir‚Block argument is the
fir‚ block in the chain of the linked li‚ of blocks for

the given wid. If the data is contained entirely in the wid index block, LQT_-
DeleteWordPlaces should not be called, and this is a fatal error. ¶ LQT_-
DeleteWordPlaces does not remove thewid⇔ Word mapping from the wordli‚ Key
Value Database, and does not zero out the information in the widindex block. Z Errors:
Fatal (E_BUG) error if Fir‚Block or wid are zero. Z See Also: LQT_Deletepblock‡

(p. 55).

Database/Update,
Database/Files

../liblqtext/la‚blk.c

API unsigned char *
LQT_LastBlockInChain(db, WID, O⁄setp, Fir‚UnusedBytepp, BlockLengthp)

t_LQTEXT_Database *db;
t_WID WID;
unsigned long *O⁄setp; /* in: fir‚ o⁄set; Out: la‚ o⁄set */
unsigned char **Fir‚UnusedBytepp; /* out only */
unsigned int *BlockLengthp;

Returns the la‚ block in the chain for a given wid. The value may have been set previ-
ously by LQT_SetLastBlockInChain, or can be deduced by reading the chain from disk
a block at a time until the end is reached. Z Returns: A pointer to the (extended) block in
the data cache Z Errors: Fatal error (E_BUG) if the value cannot be determined Z See Also:
LQT_SetLastBlockInChain

‡ (p. 53).

Database/Update,
Database/Documents
../liblqtext/mkfinfo.c

API t_FileInfo *
LQT_MakeFileInfo(db, FileName)

t_LQTEXT_Database *db;
char *FileName;

Creates a t_FileInfo ‚ru·ure to describe the given
FileName. This routine should only be used if you
are going to add the given FileName to the given
lq-text Database db; to get a FileInfo describing a file
already in the index, use LQT_NameToFID and LQT_-

FIDToFileInfo. Z Returns: If the file is not already in the database, a new fid is allocated,
and a newly malloc’d t_FileInfo obje· is returned, complete with a ‚dio file pointer
already opened, either as a file or as a pipe, depending on the file type and filter table; it is
the caller’s responsibility to call LQT_DestroyFileInfo to free the memory and close the
‚dio ‚ream. ¶ On error, or if the file is already in the database and has not changed since
it was la‚ indexed, a warning is issued and anull pointer is returned. Z Errors: If the file
can’t be found, or can’t be opened, a warning is produced. Z See Also: LQT_Destroy-
FileInfo

‡ (p. 35); LQT_NameToFID‡ (p. 14); LQT_FIDToFileInfo‡ (p. 9); LQT_GetFilter-

LQT_Deletepblock Database/Words, Database/Update, p. 55
LQT_DestroyFileInfo Database/Documents, Memory, p. 35
LQT_FIDToFileInfo Database/Retrieval, Database/Docu-

ments, p. 9
LQT_NameToFID Database/Retrieval, Database/Docu-

ments, p. 14
LQT_SetLastBlockInChain Database/Update, Data-

base/Files, p. 53

Type
‡ (p. 36); LQT_MakeInput‡ (below).

Database/Update,
Database/Documents
../liblqtext/filters.c

API FILE *
LQT_MakeInput(db, FileInfo)

t_LQTEXT_Database *db;
t_FileInfo *FileInfo;

Opens the document referred to by the given File-
Info for reading, using external input filters if neces-
sary.</P>. ¶ The returned ‚dio ‚ream may refer to
a pipe or to a file; use LQT_DestroyFileInfo to
close it. ¶ You mu‚ use LQT_DestroyFileInfo to

close the file and free the memory Z Returns: A ‚dio ‚ream open for reading, ornull on
error. Z Errors: Issues an error if a required external filter could not be ‚arted. Z See Also:
LQT_MakeFileInfo

‡ (opposite); LQT_DestroyFileInfo‡ (p. 35); LQT_GetFilterType‡

(p. 36).

Database/Update,
Database/Words
../liblqtext/wordinfo.c

API unsigned long
LQT_MakeWordInfoBlock(db, WordInfo, pblock)

t_LQTEXT_Database *db;
t_WordInfo *WordInfo;
t_pblock *pblock;

Tries to put the given pblock into the given Word-
Info’s index block, a bu⁄er reserved for this pur-
pose. Z Returns: 1. the number of places success-
fully added 2. 0 if no word places were given in

pblock Z See Also: LQT_PutWordInfoIntoIndex‡ (overleaf); LQT_MakeWordInfoB-
lockHeader

‡ (below). Z Errors: Warns if WordInfo already has a non-zero O⁄set.

Database/Update,
Database/Words
../liblqtext/wordinfo.c

LIBRARY void
LQT_MakeWordInfoBlockHeader(db, WordInfo, pblock)

t_LQTEXT_Database *db;
t_WordInfo *WordInfo;
t_pblock *pblock;

Writes a database header block (a WIDindex entry)
into the given WordInfo. This is split into a separate
routine so that the library can write a word block
header tentatively, using a di⁄erent format for the

header if the header and the data all fit into the index block. LQT_-
MakeWordInfoBlockHeader determines the format to use by whether Word-
Info→O⁄set is non-zero. The di⁄erence is whether a fixed four bytes are used for the
total number of word places for this word, or whether a variable number of bytes, using
LQT_sWriteNumber, are written. In the latter case, update in place is not possible, and
this format is therefore only used when WordInfo→O⁄set is zero, and any update would
in any case have to read and rewrite the word index block.

LQT_DestroyFileInfo Database/Documents, Memory, p. 35
LQT_GetFilterType Database/Documents, p. 36
LQT_MakeFileInfo Database/Update, Database/Documents,

p. 50
LQT_MakeInput Database/Update, Database/Documents,

p. 51
LQT_MakeWordInfoBlockHeader Database/Update, Data-

base/Words, p. 51

LQT_PutWordInfoIntoIndex Database/Update, Data-
base/Words, p. 52

Database/Update,
Database/Words

../liblqtext/wordinfo.c

API int
LQT_PutWordInfoIntoIndex(db, theWordInfo, O⁄set)

t_LQTEXT_Database *db;
t_WordInfo *theWordInfo;
unsigned long O⁄set;

Each WordInfo ‚ru·ure contains a pointer to a
single data block, which is used to ‚ore the widin-
dex header. This speeds up indexing, since the
header is needed at both the ‚art of writing out

WordPlaces and at the end. LQT_PutWordInfoIntoIndex arranges that index block be
written out to the widindex index file, using LQT_WriteWordInfoIndexBlock. ¶ A
wid mu‚ have been allocated for this word with LQT_WriteWordAndWID for this
word already, on this or some other program run. ¶ This routine is generally called after
LQT_Writepblock. Z Returns: zero Z Errors: Warns if the WordInfo has a datablock but
no o⁄set. If asciitrace was defined when the library was compiled, and if the
lqtrace_readafterwrite trace flag is set, LQT_PutWordInfoIntoIndex checks that
theWordinfo→wid corresponds to theWordInfo→Word, using LQT_WordToWID, and
produces a fatal (E_BUG) error if not.

Database/Update,
Database/Documents

../liblqtext/fileinfo.c

API int
LQT_RemoveFileInfoFromIndex(db, FileInfo)

t_LQTEXT_Database *db;
t_FileInfo *FileInfo;

Removes the given FileInfo from the fid⇔FileInfo
maps. It is the caller’s responsibility to ensure that
the given fid is not referenced anywhere in a saved

WordPlace. Z Returns: 1. zero on success 2. –1 on error Z See Also: LQT_NameToFID‡

(p. 14); LQT_DestroyFileInfo‡ (p. 35). Z Errors: Warns if the database can’t be opened

Database/Update,
Database/Documents

../liblqtext/fileinfo.c

API int
LQT_RenameFileInIndex(db, OldName, NewName)

t_LQTEXT_Database *db;
char *OldName;
char *NewName;

Changes the filename associated with a fid, by find-
ing the fid for the old filename and then replacing
its filename. Z Returns: 1. zero on success 2. –1 on
error Z Errors: Warns if the database can’t be opened

or the file isn’t indexed.

Database/Update,
Database/Documents

../liblqtext/fileinfo.c

API int
LQT_SaveFileInfo(db, FileInfo)

t_LQTEXT_Database *db;
t_FileInfo *FileInfo;

Stores the given t_FileInfo ‚ru·ure in the database
referred to by the given db argument, whence it can
be retrieved by fid or by filename. Z Returns:
1. zero on success 2. –1 if error Z Errors: Warns if the
database can’t be opened or written to. Z See Also:

LQT_RemoveFileInfoFromIndex
‡ (above); LQT_DestroyFileInfo‡ (p. 35).

LQT_DestroyFileInfo Database/Documents, Memory, p. 35
LQT_NameToFID Database/Retrieval, Database/Docu-

ments, p. 14
LQT_RemoveFileInfoFromIndex Database/Update, Data-

base/Documents, p. 52

Database/Update,
Database/Files
../liblqtext/la‚blk.c

API void
LQT_SetLastBlockInChain(db, WID, O⁄setp, Fir‚UnusedBytep, theBlock)

t_LQTEXT_Database *db;
t_WID WID;
unsigned long *O⁄setp; /* In: la‚ o⁄set */
unsigned char *Fir‚UnusedBytep;
unsigned char *theBlock;

LQT_SetLastBlockInChain maintains the chainend file in the database dire·ory; this
contains the block number of the la‚ block in the chain used to ‚ore data for a given
wid. This allows lqaddfile to update an entry e‹ciently, as otherwise it has to read the
entire chain from the ‚art to determine the la‚ block before it can ‚art appending to it.
Failing to call this fun·ion after changing the la‚ block number for a given wid will
result in a corrupt database. ¶ The given O⁄setp is a pointer to a long, although the value
is not changed; this is simply for consi‚ency with other routines, and may change in the
future. The Fir‚UnusedBytepp is currently used only for debugging; the value is recom-
puted from the data when it is used. Z Errors: Fatal error if the cache file can’t be created,
if it isn’t already open. Z See Also: LQTp_FlushLastBlockCache‡ (overleaf); LQT_Last-
BlockInChain

‡ (p. 50).

Database/Update,
Database/Words
../liblqtext/lqsort.c

API void
LQT_SortWordPlaces(db, NumberOfWordPlaces, WordPlaces)

t_LQTEXT_Database *db;
unsigned long NumberOfWordPlaces;
t_WordPlace *WordPlaces;

Sorts the given WordPlace array using Quicker Sort
to the in-memory ‚op li‚, to be ignored by LQT_-
ReadWord. A WordPlace array mu‚ be sorted in
ascending order by fid, then by Block In File, then

by Word Within Block, in order to be written to the database. Since this is exa·ly the
order generated by reading files one at a time from beginning to end, this routine is not
currently used. Z Notes: Buggy, I think.

Database/Update,
Database/Words
../liblqtext/wordinfo.c

API void
LQT_UpdateWIDMatchCount(db, WID, AddedThese)

t_LQTEXT_Database *db;
t_WID WID;
unsigned long AddedThese;

Revises the count of the number of occurrences of
the given word held in the WIDindex file. It is the
caller’s responsibility to ensure that this number is
the same as the number of matches that are ‚ored

with LQT_WriteWordPlaces before the next call to LQT_GetWordPlaces. In particu-
lar, reducing the number of occurrences with this call will not cause word places to be
deleted; a fatal (E_BUG) error will generally be produced on trying to read back a word
with an inconsi‚ent Match Count. Z Errors: It’s a fatal error (E_BUG) if thewid isn’t in

LQT_LastBlockInChain Database/Update, Database/Files,
p. 50

LQTp_FlushLastBlockCache Database/Update, Data-
base/Files, p. 54

the index.

Database/Update,
Database/Words

../liblqtext/wordinfo.c

API t_WID
LQT_WriteWordAndWID(db, Word, Length, WID)

t_LQTEXT_Database *db;
char *Word;
int Length;
t_WID WID;

Saves the wid → Word mapping in the wordli‚
database. Z Returns: the given wid. Z Errors: Fatal
error if the database can’t be opened, or if the word
couldn’t be ‚ored. Z Notes: The reverse map, Word

→ wid, is performed using LQT_WIDToWord, and uses the copy of the word ‚ored in
the widindex block header. Z See Also: LQT_WIDToWord‡ (p. 15); LQT_WordToWID‡

(p. 16); LQT_PutWordInfoIntoIndex‡ (p. 52).

Database/Update,
Database/Physical

../liblqtext/wpblock.c

API unsigned long
LQT_WriteWordPlaces(

db,
WordPlaces,
WID,
La‚Start,
Block, DataStart, BlockLength,
NextO⁄set, NextSize,
NumberToWrite)
t_LQTEXT_Database *db;
t_WordPlace *WordPlaces;
t_WID WID;
unsigned long La‚Start;
unsigned char *Block;
unsigned char *DataStart;
unsigned int BlockLength;
unsigned long NextO⁄set;
unsigned long NextSize;
unsigned long NumberToWrite;

Writes the given WordPlaces to disk. ¶ The given
La‚Start argument should be zero if the given
Block pointer refers to data that is not to be ‚ored in
the overflow file (‘data’). This will be the case when
the fir‚ few matches are to be written into the
widindex entry. If the La‚Start argument is non-
zero, it is the block number that will be passed as an
argument to LQT_WriteBlock to save the block
when it is full. ¶ The given NextO⁄set can either be
zero or it can be the block o⁄set in the data overflow
file of a block that has been allocated using LQT_-
FindFreeBlock; in the latter case, the NextLength
argument is also passed on to LQT_-
WriteWordPlaces. Z Returns: 1. the number of
words added on success; 2. –1 if the file couldn’t be
opened. Z Notes: This routine is fairly low-level, and
is made available in the api for e‹ciency. You
should not attempt to use it without looking at

examples in the lq-text clients that update the database, and also reading the source of the
fun·ion itself. Z Errors: Warns if the file can’t be opened.

Database/Update,
Database/Physical

../liblqtext/wpblock.c

API unsigned long
LQT_Writepblock(db, WordInfo, pblock)

t_LQTEXT_Database *db;
t_WordInfo *WordInfo;
t_pblock *pblock;

Write out an entire (presumably new) data entry,
and return a disk pointer to the ‚art of the chain.
Z Returns: the byte o⁄set of the fir‚ block in the
newly created chain Z Errors: Fatal (E_BUG) error

on format or consi‚ency check, etc.

Database/Update,
Database/Files

../liblqtext/la‚blk.c

LIBRARY int
LQTp_FlushLastBlockCache(db)

t_LQTEXT_Database *db;

Ensures that all entries in the la‚ block cache are
written out to disk. This routine mu‚ be called
before a routine that has updated the database exits.
¶ This routine is regi‚ered as an a·ion to be per-

formed on a database close or sync, and so is called automatically by LQT_CloseDatabase
and LQT_SyncDatabase; the ignored argument and the return value are for compatibility
with LQT_AddActionOnClose. Z Errors: Warns if there are sy‚em problems writing
the data or closing the associated file. Z See Also: LQT_SetLastBlockInChain ‡ (previous
page); LQT_LastBlockInChain ‡ (p. 50); LQT_AddActionOnClose ‡ (p. 3);
LQT CloseDatabase

‡ (p 4)

Database/Words

Fun·ions in this category are used to manipulate and update the vocabulary part of
an lq-text index, and also deal with the low-level binary representation of li‚s of
matches.

The pblock ‚ru·ure (referred to chiefly in this se·ion) is defined in h/pblock.h; it
is an in-memory representation of the data ‚ored in one or more physical database
blocks for a given word.

The t_WID type is a Word IDentifier: each di‚in· word in the vocabulary is
assigned a unique number (a C unsigned long, ‚arting at one rather than zero).
This number is used as an index into a fixed-record-size file, ‘widindex’. The record
contained there ‚ores the fir‚ few matches for the word, and possibly a pointer into
the overflow file, ‘data’, where the re‚ of the matches are ‚ored.

LQT_Deletepblock 55
LQT_GetMaxWID 55
LQT_WriteCurrentMaxWID 56
LQT_fprintWordInfo 56

Database/Words,
Database/Update
../liblqtext/pbcache.c

API void
LQT_Deletepblock(db, pblock)

t_LQTEXT_Database *db;
t_pblock *pblock;

Deletes the word places for a given pblock, using
LQT_DeleteWordPlaces. ¶ Like LQT_-
DeleteWordPlaces, LQT_Deletepblock does not
remove the wid⇔ Word mapping from the
wordli‚ Key Value Database, and does not zero out

the information in the widindex block. ¶ In other words, the word is not removed from
the database vocabulary, and subsequent calls to LQT_WordToWID will return the same
wid value as before the call to LQT_Deletepblock.<P> Z See Also: LQT_Getpblock‡

(p. 13); LQT_DestroyWordInfo‡ (p. 63).

Database/Words
../liblqtext/getwid.c

API t_WID
LQT_GetMaxWID(db)

t_LQTEXT_Database *db;

Returns the large‚ currently allocatedwid.

LQT_AddActionOnClose Database/Database, p. 3
LQT_CloseDatabase Database/Database, p. 4
LQT_DestroyWordInfo Memory, Database/Words, p. 63
LQT_Getpblock Database/Retrieval, Database/Physical, p. 13
LQT_LastBlockInChain Database/Update, Database/Files,

p. 50
LQT_PutWordInfoIntoIndex Database/Update, Data-

base/Words, p. 52

LQT_SetLastBlockInChain Database/Update, Data-
base/Files, p. 53

LQT_WIDToWord Database/Retrieval, Database/Words,
p. 15

LQT_WordToWID Database/Retrieval, Database/Words,
p. 16

Database/Words
../liblqtext/setwid.c

API int
LQT_WriteCurrentMaxWID(db)

t_LQTEXT_Database *db;

Writes the value of the large‚ allocatedwid to disk.
This value is cached for e‹ciency, so LQT_-
WriteCurrentMaxWID mu‚ be called after allo-
cating a new wid and before the program exits.

¶ Since LQT_WriteCurrentMaxWID is regi‚ered as an a·ion to be performed on clos-
ing or flushing a database, it will be called automatically by a call to either LQT_Close or
LQT_Sync. ¶ The ignored argument is required by LQT_AddActionOnClose. Z See
Also: LQT_AddActionOnClose ‡ (p. 3); LQT_CloseDatabase‡ (p. 4); LQT_SyncData-
base

‡ (p. 5).

Database/Words
../liblqtext/wordinfo.c

API void
LQT_fprintWordInfo(db, ‚ream, W, Caller)

t_LQTEXT_Database *db;
FILE *‚ream;
t_WordInfo *W;
char *Caller;

Prints an ascii representation of the given Word-
Info pointer to the given ‚dio ‚ream. The Caller
argument is printed before each line of output, and
is usually the name of the fun·ion calling LQT_-

fprintWordInfo.

LQT_AddActionOnClose Database/Database, p. 3
LQT_CloseDatabase Database/Database, p. 4
LQT_SyncDatabase Database/Database, p. 5

Language/Stemming

The idea of ‚emming is that you put Apple and Apples under the same heading in
the index; that is, collating them together, or conflating them.

Currently, the lq-text ‚emmer handles only plurals and possessives; a better one
would also under‚and that run and ran and running go together, for example.

The more ‚emming you do, the lower the precision of matches, but the higher the
recall. Since lq-text was originally designed for very high precision, ‚emming has
not been a high priority.

Note that when matches are written to the database, the fa· that ‚emming was
applied is also recorded, using two bits (one for plurals and one for possessives) so that
a query for Apples doesn’t by default match Apple in the database, but a query for
Apple will match both.

The principle is that the package should not infer more precision than was used in
the query, but where higher precision was used, should take advantage of it where it
can.

LQT_EndsWord 57
LQT_GenerateWordFromRoot 57
LQT_OnlyWithinWord 58
LQT_ReduceWordToRoot 58
LQT_StartsWord 59

Language/Stemming
../liblqtext/wordrule.c

API int
LQT_EndsWord(db, ch)

t_LQTEXT_Database *db;
int ch;

Returns non-zero only if the given chara·er ch can
appear within or at the end of a word. This fun·ion
is normally a macro declared in the header file <wor−
drules.h> but can also be defined as a C fun·ion is
greater complexity is needed and the indexing

speed loss is not a concern. Z Returns: zero or non-zero. Z Bugs: This routine is only sen-
sible for English. Z See Also: LQT_StartsWord‡ (p. 59); LQT_OnlyWithinWord‡ (over-
leaf).

Language/Stemming
../liblqtext/root.c

API char *
LQT_GenerateWordFromRoot(db, WordInfo, Flags)

LQT_OnlyWithinWord Language/Stemming, p. 58 LQT_StartsWord Language/Stemming, p. 59

t_LQTEXT_Database *db;
t_WordInfo *WordInfo;
unsigned int Flags;

LQT_GenerateWordFromRoot tries to generate
the original word from the given flags. Sometimes
multiple plurals reduce to the same singular, such as
brothers and brethren both being forms of brother,

and in these cases the generated word may be incorre·. Other cases include words end-
ing in the letter o, which may or may not have has an es ‚ripped o⁄, so that SunOS (the
operating sy‚em) is indexed as Suno, and incorre·ly pluralised as Sunoes. Z Returns: A
pointer to a ‚atic bu⁄er Z Bugs: Should allow per-database ‚emming options. Z See Also:
LQT_ReduceWordToRoot

‡ (below); LQT_WordToWID‡ (p. 16); LQT_WIDToWord‡

(p. 15).

Language/Stemming
../liblqtext/wordrule.c

API int
LQT_OnlyWithinWord(db, ch)

t_LQTEXT_Database *db;
int ch;

Returns non-zero only if the given chara·er ch can
appear within a word but not at the ‚art or end, and
not repeated consecutively. For English, an apo‚ro-
phe (’) is normally considered to be the only such
chara·er; it’s found in wouldn’t, can’t, and o’clock.

You could also include the hyphen if you wanted, but it turns out to be be‚ to index
‘match-box’ as two separate words with pun·uation between them, rather than as a single
word. ¶ This fun·ion is normally a macro declared in the header file <wordrules.h> but
can also be defined as a C fun·ion is greater complexity is needed and the indexing speed
loss is not a concern. Z Returns: zero or non-zero. Z Bugs: This routine is only sensible for
English. Z See Also: LQT_StartsWord‡ (opposite).

Language/Stemming
../liblqtext/root.c

API char *
LQT_ReduceWordToRoot(db, WordInfo)

t_LQTEXT_Database *db;
t_WordInfo *WordInfo;

Reduces the word in the WordInfo pointed to by its
argument to an English root, by ‚ripping plurals
and possessives. WordInfo→Length is modified as

necessary, and WordInfo→Flags are updated by or’ing any necessary items from <wor−
drules.h>. The word can grow by up to two chara·ers in length. It is the caller’s responsi-
bility to allocate enough space. You can also use the wordroot macro from <wor−
drules.h>, which calls LQT_ReduceWordToRoot only if it might make a change.
Z Returns: A pointer to WordInfo’s Word Z Bugs: This routine is only sensible for English.
Z See Also: LQT_ReadWordFromStringPointer‡ (p. 15).

LQT_ReadWordFromStringPointer Database/Retrieval,
Database/Documents, p. 15

LQT_ReduceWordToRoot Language/Stemming, p. 58
LQT_StartsWord Language/Stemming, p. 59
LQT_WIDToWord Database/Retrieval, Database/Words,

p. 15
LQT_WordToWID Database/Retrieval, Database/Words,

p. 16

Language/Stemming
../liblqtext/wordrule.c

API int
LQT_StartsWord(db, ch)

t_LQTEXT_Database *db;
int ch;

Returns non-zero only if the given chara·er ch can
appear at the ‚art of a word. This fun·ion is nor-
mally a macro declared in the header file <wor−
drules.h> but can also be defined as a C fun·ion is
greater complexity is needed and the indexing

speed loss is not a concern. Z Returns: zero or non-zero. Z Bugs: This routine is only sen-
sible for English. Z See Also: LQT_EndsWord‡ (p. 57); LQT_OnlyWithinWord‡ (oppo-
site).

LQT_EndsWord Language/Stemming, p. 57 LQT_OnlyWithinWord Language/Stemming, p. 58

Language/Stop Li‚

It’s common pra·ice in text retrieval to omit words from the database if they occur
very often. For example, ‘and’, ‘the’ and ‘to’ don’t seem to add very much information.
However, in certain circum‚ances, such as ‘The Times’, or ‘Bitwise and’, the words
are suddenly of great significance.

There are three approaches to this.
Fir‚, you can say that people looking for The Times are out of luck.
Second, you can index all of the words, and take a penalty on index size. This pen-

alty is usually from one to thirty percent of the total index size, and is usually accept-
able.

Thirdly, you could specify a li‚ of contexts in which words in the ‚opli‚ are to be
indexed anyway. There are three problems with this la‚ approach. Fir‚ly, you don’t
have enough context in a query to determine what to do about those words. Secondly,
you have to think of all the contexts in advance; if you didn’t think of ‘the Times’, the
user would ‚ill be out of luck. Finally, lq-text doesn’t support this third approach
dire·ly, although you could modify lq-text, perhaps using the routines in this cate-
gory.

LQT_InsertCommonWord 61
LQT_ReadStopLi‚ 62
LQT_WordIsInStopLi‚ 62

Language/Stop Li‚
../liblqtext/common.c

ARGSUSED2*/
API void
LQT_InsertCommonWord(db, Root)

t_LQTEXT_Database *db;
char *Root;

The given word will be ignored by LQT_ReadWord.
Note that if you ignore di⁄erent words on retrieval
than on indexing, lq-text will not be able to locate
the exa· text of matches, and phrase matching may
have unexpe·ed results. You should therefore not

modify the ‚opli‚ once you have created an index. Z Bugs: The common li‚ is shared by
all lq-text databases. There is no way to remove a word from the ‚opli‚. Z See Also:
LQT_ReadStopList

‡ (overleaf); LQT_WordIsInStopList‡ (overleaf).

LQT_ReadStopList Language/Stop Li‚, p. 62 LQT_WordIsInStopList Language/Stop Li‚, p. 62

Language/Stop Li‚
../liblqtext/common.c

API int
LQT_ReadStopList(db, CommonFile)

t_LQTEXT_Database *db;
CONST char *CommonFile;

Reads the named file, and adds any words found in
it to the in-memory ‚op li‚, to be ignored by LQT_-
ReadWord. Z Returns: 1. the number of words
added on success; 2. –1 if the file couldn’t be opened.
Z Errors: Warns if the file can’t be opened. Z See

Also: LQT_WordIsInStopList‡ (below). Z Bugs: There is no way to clear the ‚op li‚; you
can only add to it. The current implementation is ine‹cient if there are more than ten or
so words. Z Notes: A future release may support a ‘go li‚’ of phrases every word of which
is to be indexed.

Language/Stop Li‚
../liblqtext/common.c

API int
LQT_WordIsInStopList(db, WordInfo)

t_LQTEXT_Database *db;
t_WordInfo *WordInfo;

Returns 1 if the given word is in the ‚op li‚, 0
otherwise. This fun·ion is called by the LQT_-

ReadWord routines on each input word to deter-
mine whether to return it. Z Returns: 1. 1 if the
word is in the ‚op li‚ 2. 0 otherwise Z Bugs: Fir-

‚CharBitMap is shared across all databases. You cannot have more than one database
open at a time anyway at the moment, so this is not yet an issue…

LQT_WordIsInStopList Language/Stop Li‚, p. 62

Memory

Routines in this category deal with allocating and freeing memory. The routines
emalloc

‡ (p. 68); erealloc‡ (p. 68); ecalloc‡ (p. 67); and efree‡ (p. 67); rou-
tines are due to change shortly in a move to a slab allocation policy.

LQT_De‚royWordInfo 63
LQT_MakeWordInfo 63

Memory, Database/Words
../liblqtext/wordinfo.c

API void
LQT_DestroyWordInfo(db, WP)

t_LQTEXT_Database *db;
t_WordInfo *WP;

Deletes the given ‚ru·ure from memory, reclaim-
ing ‚orage. This routine does not a⁄e· the data-
base. Z See Also: LQT_DestroyFileInfo‡ (p. 35);
LQT_DeleteWordFromIndex

‡ (p. 49);
LQT_MakeWordInfo

‡ (below).

Memory, Database/Words
../liblqtext/wordinfo.c

API t_WordInfo *
LQT_MakeWordInfo(db, WID, Length, Word)

t_LQTEXT_Database *db;
t_WID WID;
int Length;
unsigned char *Word;

Con‚ru·s a new t_WordInfo ‚ru·ure containing a
malloc’d and nul terminated copy of the given
word. The word as passed into LQT_-
MakeWordInfo need not be nul terminated; the

Length parameter is the number of bytes in the Word ‚ring, not counting the trailing
nul, if present. Z See Also: LQT_ReadWordFromStringPointer‡ (p. 15); LQT_Des-
troyWordInfo

‡ (above); LQT_WordToWID‡ (p. 16). Z Errors: Fatal error if there isn’t
enough memory

LQT_DeleteWordFromIndex Database/Update, Data-
base/Words, p. 49

LQT_DestroyFileInfo Database/Documents, Memory, p. 35
LQT_DestroyWordInfo Memory, Database/Words, p. 63
LQT_MakeWordInfo Memory, Database/Words, p. 63
LQT_ReadWordFromStringPointer Database/Retrieval,

Database/Documents, p. 15
LQT_WordToWID Database/Retrieval, Database/Words,

p. 16

ecalloc Utilities/Memory, p. 67
efree Utilities/Memory, p. 67
emalloc Utilities/Memory, p. 68
erealloc Utilities/Memory, p. 68

Other/Terminal

This category contains any remaining holdovers from the libcurses era. These func-
tions are being moved out of the main library and into the clients; it’s possible that a
new library will be created to create them in time.

LQU_CursesSafeSy‚em 65

Other/Terminal
../liblqtext/sy‚em.c

API void
LQU_CursesSafeystem(‚ring, retvalp)

char *‚ring;
int *retvalp;

runs the given ‚ring as a sy‚em command, using
sy‚em(3); the terminal modes are re‚ored before
and after. Z Re‚ri·ions: This routine should not be
used and will be deleted from the next release; it is
only useful for curses-based clients, and should be

provided separately.

Utilities/Memory

The fun·ions in this category provide wrappers around the sy‚em-provided malloc,
free and friends. The reasons for using these fun·ions are as follows:

To provide consi‚ant error messages;
to aid in porting;
To aid in debugging.
If the compile-time manife‚ malloctrace is defined (for example, with

–dmalloctrace=1 as a compiler option), these routines provide tracing output to
‚andard error which can be used to dete· memory leaks.

ecalloc . 67
efree . 67
emalloc . 68
erealloc . 68

Utilities/Memory
../liblqutil/malloc.c

char *
ecalloc(What, Number, Size)

CONST char *What;
unsigned int Number;
unsigned int Size;

Allocates su‹cient memory to hold the given
Number of obje·s of the given Size, after taking
alignment con‚raints into account; the sy‚em-sup-
plied calloc fun·ion is used. ¶ If there is not
enough memory, a fatal error is generated. The

What argument is included in any such error message, and should be a human-readable
description of the error, as an aid to help the user under‚and exa·ly what failed. ¶ A
future release of lq-text will have an improved memory allocation interface. Z Errors: A
fatal (E_FATAL | E_MEMORY) error is produced if memory is exhau‚ed. Z See Also:
emalloc

‡ (overleaf); efree‡ (below); Error‡ (p. 23).

Utilities/Memory
../liblqutil/malloc.c

void
efree(String)

char *String;

Returns the memory used by an obje· to the sys-
tem, using the sy‚em-provided free fun·ion. ¶ A
future release of lq-text will have an improved mem-
ory allocation interface. Z Errors: A warning (E_-

WARN) is produced a null pointer is passed as an argument.

Error Error Handling, p. 23
efree Utilities/Memory, p. 67
emalloc Utilities/Memory, p. 68

Utilities/Memory
../liblqutil/malloc.c

char *
emalloc(What, nbytes)

CONST char *What;
unsigned nbytes;

Allocates the given number of bytes of memory and
returns a pointer to it, using the sy‚em-supplied
malloc fun·ion. ¶ If there is not enough memory, a
fatal error is generated. The What argument is
included in any such error message, and should be a

human-readable description of the error, as an aid to help the user under‚and exa·ly
what failed. ¶ A future release of lq-text will have an improved memory allocation inter-
face. Z Errors: A fatal (E_FATAL | E_MEMORY) error is produced if memory is exhau‚ed.
Z See Also: ecalloc‡ (previous page); efree‡ (previous page); Error‡ (p. 23).

Utilities/Memory
../liblqutil/malloc.c

char *
erealloc(Obje·, NewSize)

char *Obje·;
unsigned int NewSize;

Changes the size of the given Obje·, either by
extending the area of memory allocated to it or by
allocating a new area, copying the data and freeing
the original ‚orage area. ¶ If insu‹cient memory
is available, a fatal (E_FATAL) error is produced,

which includes the given What argument as a textual (human-readable) description of
the obje·. ¶ The sy‚em-supplied realloc fun·ion is used. Z Returns: A pointer to the
newly sized obje·; in mo‚ implementations this will almo‚ always be a new copy of the
obje·. A future release of lq-text will have an improved memory allocation interface.
Z Errors: A fatal (E_FATAL | E_MEMORY) error is produced if memory is exhau‚ed.
Z See Also: emalloc‡ (above); efree‡ (previous page); Error‡ (p. 23).

Error Error Handling, p. 23
ecalloc Utilities/Memory, p. 67
efree Utilities/Memory, p. 67
emalloc Utilities/Memory, p. 68

Utilities/Sy‚em

Intera·ions with the operating environment, such as fetching a user’s login dire·ory,
are li‚ed here. In general, lq-text has minimal involvement with the operating sys-
tem apart from memory allocation and the file sy‚em, so there is not much in this
category.

LQU_GetLoginDire·ory 69

Utilities/Sy‚em
../liblqutil/homedir.c

API char *
LQU_GetLoginDirectory()

Determines the home dire·ory of the current user.
It returns the value of the environment variable
$home if it is set. If this isn’t set, or is empty, or

does not point to a dire·ory, the password file (or Yellow pages) is consulted in‚ead.
Z Returns: The dire·ory name in a malloc’s ‚ring; it is the caller’s responsibility to free
this ‚ring if it should no longer be needed. If the home dire·ory cannot be determined,
a null pointer is returned; this might happen if the user’s entry in /etc/passwd was
removed while the program was running, or if the Yellow Pages (nis) service became una-
vailable.

Utilities/Files

The routines in this category are generally wrappers around Unix sy‚em or library
calls, or are useful routines for file handling.

The wrapper routines exi‚ so that helpful and precise error messages can be gen-
erated in failure cases.

The other routines are for items such as determining whether a filename refers to
a file or a dire·ory, reading a file into memory a line at a time, or determining
whether a file is empty.

As with all of the Utilities categories, none of these routines are specific to the
lq-text database in any way, but they are all used by lq-text.

LQU_Elseek . 71
LQU_Eopen . 72
LQU_Eread . 72
LQU_IsDir . 73
LQU_IsFile . 73
LQU_IsNonEmptyFile 73
LQU_ReadFile 73
LQU_StealReadLineBu⁄er 74
LQU_fEclose 75
LQU_fEopen 75
LQU_fReadFile 75
LQU_fReadLine 76

Utilities/Files
../liblqutil/elseek.c

API o⁄_t
LQU_Elseek(Severity, Name, What, fd, Position, Whence)

int Severity;
CONST char *Name;
CONST char *What;
int fd;
long Position;
int Whence;

This is a wrapper for the lseek(2) sy‚em call. On an
error, the given Name (which should refle· the cor-
responding file name, but need not be suitable to
access that file) and What, which should be a terse
description of the way in which the program is
using the file, are used to con‚ru· a message passed

to Error with the given Severity. ¶ The fd, Position and Whence arguments are as for the
lseek(2) sy‚em call. Z Returns: The new file o⁄set on success, or –1 on failure. Z Errors:
Generates an Error at the given Severity if lseek fails, adding (with bitwise or) E_SYS if
appropriate.
Z Example:

Where = LQU_lseek(E_FATAL, "passwd", "user database", 0, 0L, seek_set);

Utilities/Files
../liblqutil/fEopen.c

API int
LQU_Eopen(Severity, Name, What, Flags, Modes)

int Severity;
CONST char *Name;
CONST char *What;
int Flags;
int Modes;

Opens the named file with the given Flags and
Modes, as per open(2). If the open fails, an error is
generated with the given severity, and including
both the file name (Name) and description (What).
A diagnosis of the problem is also generated, using

errno and examining the filename to determine if (for example) a component of the given
path was not a dire·ory. This generally produces much more specific, and hence, clearer,
error messages than using perror(3) would give. Z Returns: a valid file descriptor on suc-
cess, or –1 if the file couldn’t be opened. If E_FATAL was given, LQU_Eopen does not
return after an error.
Z Example:

* LQU_Eopen(E_FATAL, "foo.c", "input C source", O_RDONLY, 0)

Utilities/Files
../liblqutil/eread.c

API int
LQU_Eread(Severity, Name, What, fd, Bu⁄er, ByteCount)

int Severity;
CONST char *Name;
CONST char *What;
int fd;
char *Bu⁄er;
int ByteCount;

This routine provides an error-checking wrapper
around the read(2) sy‚em call. If the underlying
read() returns –1, a diagno‚ic message is printed
using by calling Error at the given Severity (bitwise
or’d with E_SYS if appropriate). The message
includes What, which should be a short, succin·

summary of the purpose of the file, and Name, which is normally given as the name of
the file, but could be any ‚ring. Z Returns: the number of bytes read on success, or –1 on
an error. If E_FATAL was given, LQU_Eread does not return after an error.
Z Example:

nBytesRead = LQU_Eread(E_FATAL, "passwd", "li‚ of users", 0, p, 12);

Z Notes: There are several error flags, such as E_BUG, that include E_FATAL. See
<error.h> for the current li‚. ¶ The example does not need to check to see whether
nBytesRead is less than 0, since in that case the program would exit. LQU_Eread can,
however, return a number other than ByteCount, ju‚ as the underlying sy‚em call
read(2) can, and in the same circum‚ances. The caller of LQU_Eread should therefore
check that the expe·ed number of bytes were returned.

Utilities/Files
../liblqutil/isdir.c

API int
LQU_IsDir(Dir)

CONST char *Dir;

returns 1 if and only if the given path is a dire·ory.
See the description for ‚at(2) for more details.
Z Errors: A fatal error is issued if LQU_IsDir is called
with a null ‚ring; a warning is issued if the ‚ring is

of length zero.

Utilities/Files
../liblqutil/isfile.c

API int
LQU_IsFile(Path)

CONST char *Path;

Determines whether the given Path refers to a regu-
lar file. Devices (such as /dev/null or a terminal),
and dire·ories in particular are not regular files.
The Unix command ¶ find filename -type f -print

¶ will print out filename if and only if LQU_IsFilewould return 1 for the same filename.
Z Returns: 1. 1 if the given Path represents a regular file 2. zero otherwise Z Notes: There is
tracing in here so that you can see which files are being inve‚igated by the calling pro-
gram; tracing is available if the liblqutil library was compiled with -dasciitrace; if so,
you can set the FindFile trace flag (lqtrace_findfile) to see tracing for this routine. The
-t "FindFile|Verbose" command-line option will do this. ¶ On sy‚ems that have the trace,
‚race or truss utility, inve‚igate using that in‚ead.

Utilities/Files
../liblqutil/isnzfile.c

API int
LQU_IsNonEmptyFile(Path)

CONST char *Path;

Determines whether the given Path names a regular
file that contains data. In other words, the file mu‚
have the its ‚at ‚_mode’s S_IFMT field set to S_-
IFREG, and mu‚ also have a non-zero ‚_size field;

see the ‚at(2) man page. Z Returns: Non-zero if and only if Path names a regular file of
non-zero length Z Notes: There is tracing in here so that you can see which files are being
inve‚igated by the calling program; tracing is available if the liblqutil library was com-
piled with -dasciitrace; if so, you can set the FindFile trace flag (lqtrace_findfile) to
see tracing for this routine. The -t "FindFile|Verbose" command-line option will do this.
¶ On sy‚ems that have the trace, ‚race or truss utility, inve‚igate using that in‚ead.
Z See Also: LQU_IsFile‡ (above); LQU_IsDir‡ (above).

Utilities/Files
../liblqutil/readfile.c

API long
LQU_ReadFile(Severity, Name, What, Lines, Flags)

int Severity;
CONST char *Name;
CONST char *What;
char ***Lines;
int Flags;

Reads the file named by the Name argument, and
returns a pointer to an array of pointers to the ‚art
of each line in the file. ¶ The Flags argument is any
combination of flags from <lqutil.h> combined
with bitwise or; in pra·ice, however, lquf_normal

is the mo‚ frequently used flag, which is a bitwise or of all of the flags described below.

LQU_IsDir Utilities/Files, p. 73 LQU_IsFile Utilities/Files, p. 73

¶ The flags are as follows: 1. lquf_ignblanks to throw away blank lines; 2. lquf_-
ignspaces to discard leading and trailing spaces; 3. lquf_ignhash to discard leading
comments (# with a hash-sign); 4. lquf_ignallhash to discard comments (# with a hash-
sign); 5. lquf_escapeok to accept \# and \\ as # and \. ¶ This is the file descriptor version
of LQU_fReadFile. ¶ In the event of an error, the given Severity argument is passed to
Error, along with the given What argument, which should be a brief English description,
perhaps of the order of three words long, of the file. Z Returns: the number of lines read, if
any. The char ** pointed to by the Lines argument is set to point to an array of ‚rings,
each containing one line of text, nul-terminated with trailing newlines removed. If E_-
FATAL was given, LQU_fReadFile does not return after an error.
Z Example:

int numberOfLines;
* char **theLines;
int i;
*
* numberOfLines = LQU_fReadFile(E_FATAL,

"julian.txt",
"Book of Meditations",
&theLines,
lquf_normal

);
*
for (i = 0; i < numberOfLines; i++) {

printf("Line %d was: %s\n", i, Lines[i]);
efree(Lines[i]);

}
efree((char *) Lines);

Z Errors: Generates a Warning or Error of the given Severity if the file can’t be opened,
and attempts to diagnose the cause. Z See Also: LQU_fReadFile ‡ (opposite).

Utilities/Files
../liblqutil/freadln.c

API char *
LQU_StealReadLineBuffer()

Returns the internal line bu⁄er used by LQU_-

fReadLine, and also causes LQU_fReadLine to
allocate a new bu⁄er the next time it is called. In

this way, you can read lines with LQU_fReadLine, and save any that you are intere‚ed in
keeping by calling LQU_StealReadLineBuffer, without having to copy the data. ¶ The
bu⁄er returned may be longer than necessary to contain the line that was la‚ ‚ored there
by LQU_fReadLine by up to lqt_readline_slop bytes; use erealloc to shrink it if
desired. The lqt_readline_slop con‚ant is defined in freadln.c as 30 bytes. Z Returns:
a pointer to the bu⁄er, or null if there isn’t one yet.

LQU_fReadFile Utilities/Files, p. 75

Utilities/Files
../liblqutil/fEopen.c

API void
LQU_fEclose(Severity, fp, Name, What)

int Severity;
FILE *fp;
CONST char *Name;
CONST char *What;

Closes the given file descriptor, printing error mes-
sages if necessary. Z Returns: There is no return
value. If E_FATAL was given, LQU_fEclose does
not return after an error.

Utilities/Files
../liblqutil/fEopen.c

API FILE *
LQU_fEopen(Severity, Name, What, Mode)

int Severity;
CONST char *Name;
CONST char *What;
CONST char *Mode;

This is the ‚dio equivalent of LQU_Eopen.
Z Returns: a freshly opened file pointer (file *) on
success, ornull if the file couldn’t be opened. If E_-
FATAL was given, LQU_fEopen does not return

after an error. Z Errors: Warns if the file can’t be opened.

Utilities/Files
../liblqutil/freadf.c

API long
LQU_fReadFile(Severity, f, Name, What, Lines, Flags)

int Severity;
FILE *f;
CONST char *Name;
CONST char *What;
char ***Lines;
int Flags;

Reads the named file (Name), and mallocs an array
of char * pointers to the ‚art of each line read. The
number of lines returned may be less than the num-
ber in the file, since by default LQU_fReadFile
ignores blank or commented lines. Comments are
denoted by a # as the fir‚ non-blank chara·er on

the line. If the file can’t be opened, memory is exhau‚ed, LQU_ReadFile() calls Error()
with the given Severity, and with an error message con‚ru·ed out of What, which
should be a short (e.g. 3-word) description of the purpose of the file. The Flags argument
can contain any of the following, combined with or (|): 1. uf_ignblanks to throw away
blank lines, 2. uf_ignspaces to discard leading and trailing spaces, 3. uf_ignhash to
discard leading comments (# with a hash-sign) 4.uf_ignallhash to discard comments
(# with a hash-sign) 5. uf_escapeok to accept ¶ In addition, uf_normal is defined to
be uf_ignblanks | uf_ignspaces | uf_ignhash | uf_escapeok and use of this in
reading files is ‚rongly encouraged to provide a consi‚ent file format. Z Returns: 1. a
pointer to the array of lines, in Lines 2. the number of lines allocated. 3. –1 if the file
couldn’t be opened. Z Errors: Warns (with the given severity | E_SYS) if the file can’t be
opened.

Utilities/Files
../liblqutil/freadln.c

API int
LQU_fReadLine(f, Linep, Flags)

FILE *f;
char **Linep;
int Flags;

Reads the next input line from the given file into a
‚atic bu⁄er. The bu⁄er is allocated with malloc and
resized dynamically, but is owned by LQU_-
fReadLine and should not be free’d or overwritten.
¶ The LQU_StealReadLineBuffer fun·ion can be

used to obtain the bu⁄er; LQU_fReadLine will allocate a new one the next time it is
called. ¶ The given Flags are treated as for LQU_fReadFile, which currently calls this
routine dire·ly. Note that, as for LQU_fReadFile, blank lines are skipped if the corre-
sponding flag is given. In this case, LQU_fReadLinewill never return a pointer to a blank
line, but will continue reading lines from the file until a non-blank one is found.
Z Returns: a pointer to the line, in Line, and also the number of bytes in the line; –1 is
returned on eof, in which case the Line pointer should not be used.

Utilities/Name Space

A Name Space is a set of ‚ring-valued names that map into C variables. In other
words, it’s a symbol table.

The main use for these is in the lqkwic client, but they are de‚ined for higher
things, including internationalised message support and configuration options.

A new facility, the Glue Interpreter, will be available in the next release; this gen-
eralises the little language used by the lqkwic client, and provides something rather
like printf and scanf but with named variables (and higher e‹ciency). if you are
working in this area, or would like to know more, you should send mail to Liam
Quin (lee@sq.com) and ask him for the ‚ate of progress on Glue.

LQU_Fir‚NameRef 77
LQU_GetDescriptionFromNameRef 78
LQU_GetDescriptionFromNameSpace 78
LQU_GetNameFromNameRef 78
LQU_GetTypeFromNameRef 78
LQU_GetVariableFromNameRef 79
LQU_NameRefFun·ionTakesArgument 79
LQU_NameRefIsValid 79
LQU_NameRefToString 79
LQU_NameRefValueToString 79
LQU_NameRefVariableAllocatedByLibrary 80
LQU_NameRefVariablePointsToFun·ion 80
LQU_NameSpaceTableToNameSpace 80
LQU_NameTypeToString 80
LQU_NextNameRef 81
LQU_SetNameRefFun·ionTakesArgument 81
LQU_SetNameRefVariableAllocatedByLibrary 81
LQU_SetNameTypeAndVariable 81
LQU_SetNameValue 82
LQU_SetNameVariable 82
LQU_StringToNameRef 82

Utilities/Name Space
../liblqutil/namespace.c

API t_NameRef
LQU_FirstNameRef(NameSpace)

t_NameSpace *NameSpace;

Used in conjun·ion with LQU_NextNameRef to
iterate over all of the Names in a Name Space.
Z Returns: A reference to the fir‚ Name in the given
Name Space, if there are any. Use LQU_-

NameRefIsValid() to determine if the returned reference is valid; if not, LQU_-
NameRefIsError will determine if there was an error, and LQU_GetNameError will
handle the error using Error().
Z Example:

* t_NameRef NameRef;
*
* for (
* NameRef = LQU_FirstNameRef(NameSpace);
* LQU_NameRefIsValid(NameSpace, NameRef);
* NameRef = LQU_NextNameRef(NameSpace, NameRef)
*) {
* now use theName Reference:
* printf("%s\n", LQU_GetNameFromNameRef(NameRef));
* }

Z See Also: LQU_GetNameFromNameRef‡ (below); LQU_GetTypeFromNameRef‡

(below); LQU_NameRefIsValid ‡ (opposite); LQU_NameRefIsError (undocumented);

Utilities/Name Space
../liblqutil/namespace.c

API char *
LQU_GetDescriptionFromNameRef(NameRef)

t_NameRef NameRef; Returns the textual description of the variable asso-
ciated with a given NameRef, or null if there is

none. ¶ Where the description is available, it is intended to be presented to the user, for
example in error messages, and not to be parsed. Z Notes: The NameRef mu‚ be valid.

Utilities/Name Space
../liblqutil/namespace.c

API char *
LQU_GetDescriptionFromNameSpace(NameSpace)

t_NameSpace *NameSpace; Returns a pointer to the textual description of the
given NameSpace. The text is in private memory,

and so should not be freed by the caller.

Utilities/Name Space
../liblqutil/namespace.c

API char *
LQU_GetNameFromNameRef(NameRef)

t_NameRef NameRef; Retrieves the name of the given NameRef as a
‚ring. The NameRef mu‚ be valid. Z Returns: A

pointer to the name; you should not free this ‚ring. Z See Also: LQU_NameRefIsValid ‡

(opposite).

Utilities/Name Space
../liblqutil/namespace.c

API t_NameType
LQU_GetTypeFromNameRef(NameRef)

t_NameRef NameRef; Returns the type of the variable associated with the
given NameRef. ¶ The types are defined in

<namespace.h> as an enumerated type. Z Notes: The NameRef mu‚ be valid.

LQU_GetNameFromNameRef Utilities/Name Space, p. 78
LQU_GetTypeFromNameRef Utilities/Name Space, p. 78
LQU_NameRefIsValid Utilities/Name Space, p. 79

Utilities/Name Space
../liblqutil/namespace.c

API void *
LQU_GetVariableFromNameRef(NameRef)

Returns a pointer to the variable associated with a
given NameRef. ¶ You have to ca‚ the result of this fun·ion, perhaps using LQU_-
GetTypeFromNameRef and a switch, since C lacks runtime type information. Z Notes:
The NameRef mu‚ be valid.

Utilities/Name Space
../liblqutil/namespace.c

API int
LQU_NameRefFunctionTakesArgument(NameRef)

t_NameRef NameRef; Returns non-zero if the fun·ion pointer associated
with the given Name Ref is a pointer to a fun·ion

that takes an argument. Before calling this fun·ion (or macro), you should check that
LQU_NameRefVariablePointsToFunction returns non-zero for the given NameRef.
Z Notes: The NameRef mu‚ be valid.

Utilities/Name Space
../liblqutil/namespace.c

API int
LQU_NameRefIsValid(NameSpace, NameRef)

t_NameSpace *NameSpace;
t_NameRef NameRef;

Determines whether the given NameRef is a valid
reference to a name in the given NameSpace. ¶ A
NameRef is invalid if it is a null pointer, or if the

Name to which it refers has been deleted from the NameSpace. Z Notes: This fun·ion
does <E>not</E> check to see whether a NameRef has been corrupted; the given Nam-
eRef mu‚ either be null, or have previously been a valid NameRef in the given
NameSpace. Z Returns: Non-zero if the NameRef is valid, and zero otherwise. Z See Also:
LQU_StringToNameRef

‡ (p. 82); LQU_SetNameVariable ‡ (p. 82).

Utilities/Name Space
../liblqutil/namespace.c

API char *
LQU_NameRefToString(NameRef)

t_NameRef NameRef;

Converts the value pointed to by the variable associ-
ated with the given Name Reference into a ‚ring.
Z Returns: a dynamically allocated ‚ring, which the
caller mu‚ free. Z See Also:

LQU_NameRefValueToString
‡ (below); LQU_SetNameTypeAndVariable ‡ (p. 81);

LQU_GetNameFromNameRef
‡ (opposite); LQU_GetVariableFromNameRef‡ (above).

Utilities/Name Space
../liblqutil/namespace.c

API char *
LQU_NameRefValueToString(NameRef)

t_NameRef NameRef; Converts the value pointed to by the variable associ-
ated with the given Name Reference into a ‚ring.

Z Returns: a dynamically allocated ‚ring, which the caller mu‚ free. Z See Also:

LQU_GetNameFromNameRef Utilities/Name Space, p. 78
LQU_GetVariableFromNameRef Utilities/Name Space,

p. 79
LQU_NameRefValueToString Utilities/Name Space, p. 79
LQU_SetNameTypeAndVariable Utilities/Name Space,

p. 81
LQU_SetNameVariable Utilities/Name Space, p. 82
LQU_StringToNameRef Utilities/Name Space, p. 82

LQU_SetNameTypeAndVariable
‡ (p. 81); LQU_GetNameFromNameRef‡ (p. 78);

LQU_GetVariableFromNameRef
‡ (previous page).

Utilities/Name Space
../liblqutil/namespace.c

API int
LQU_NameRefVariableAllocatedByLibrary(NameRef)

t_NameRef NameRef; Determines whether the variable associated with
the given NameRef was allocated automatically

(and is anonymous), or whether it was allocated externally and supplied to on of the
Name Space creation fun·ions. Z Notes: The NameRef mu‚ be valid.

Utilities/Name Space
../liblqutil/namespace.c

API int
LQU_NameRefVariablePointsToFunction(NameRef)

t_NameRef NameRef; Returns non-zero if the variable associated with the
given NameRef has previously been marked a

pointer to a fun·ion, for example with LQU_SetNameRefVariablePointsToFunction.
Z Notes: The NameRef mu‚ be valid.

Utilities/Name Space
../liblqutil/namespace.c

API t_NameSpace *
LQU_NameSpaceTableToNameSpace(Name, theTable)

char *Name;
t_NameSpaceTable theTable;

Converts a Name Space Table into a Name Space.
This is useful if you have a ‚atically initialised
Name Space Table, for example. ¶ The new Name

Space has the given Name as its name. The ‚ring is pointed to but not copied, and should
therefore be allocated by the caller if it is not ‚atic data. The entries in the Name Space
Table are copied, but their Name fields are simply pointed to. Z Returns: the newly
created Name Space if successful. Currently, a failure is always fatal. Z See Also:
LQU_StringToNameRef

‡ (p. 82); LQU_SetNameVariable ‡ (p. 82).

Utilities/Name Space
../liblqutil/namespace.c

API char *
LQU_NameRefTypeToString(NameType)

t_NameType NameType; Returns a ‚ring representation of the given Name-
Type. Z Returns: A ‚atically allocated ‚ring, which

need not be freed. Z See Also: LQU_SetNameTypeAndVariable ‡ (opposite); LQU_Get-
NameFromNameRef

‡ (p. 78).

LQU_GetNameFromNameRef Utilities/Name Space, p. 78
LQU_GetVariableFromNameRef Utilities/Name Space,

p. 79
LQU_SetNameTypeAndVariable Utilities/Name Space,

p. 81
LQU_SetNameVariable Utilities/Name Space, p. 82
LQU_StringToNameRef Utilities/Name Space, p. 82

Utilities/Name Space
../liblqutil/namespace.c

API t_NameRef
LQU_NextNameRef(NameSpace, NameRef)

t_NameSpace *NameSpace;
t_NameRef NameRef;

Used in conjun·ion with LQU_NextNameRef to
iterate over all of the Names in a Name Space.
Z Returns: A reference to the fir‚ Name in the given

Name Space, if there are any. Use LQU_NameRefIsValid() to determine if the returned
reference is valid; if not, LQU_NameRefIsErrorwill determine if there was an error, and
LQU_GetNameError will handle the error using Error(). Z See Also: LQU_Get-
NameFromNameRef

‡ (p. 78); LQU_GetTypeFromNameRef‡ (p. 78); LQU_NameRe-
fIsValid

‡ (p. 79); LQU_NameRefIsError (undocumented);

Utilities/Name Space
../liblqutil/namespace.c

API void
LQU_SetNameRefFunctionTakesArgument(NameRef)

t_NameRef NameRef; Stores within the NameRef the fa· that the variable
associated with it is a pointer to a fun·ion that takes

an argument. The NameRef mu‚ previously have been marked as being associated with
a fun·ion pointer using LQU_SetNameRefVariablePointsToFunction. Z Notes: The
NameRef mu‚ be valid.

Utilities/Name Space
../liblqutil/namespace.c

API int
LQU_SetNameRefVariableAllocatedByLibrary(NameRef)

t_NameRef NameRef; Stores within the NameRef the fa· that the variable
associated with it is a piece of dynamically allocated

memory internal to the Name Space library. Z Notes: The NameRef mu‚ be valid. ¶ This
fun·ion should not be used by client software.

Utilities/Name Space
../liblqutil/namespace.c

API void
LQU_SetNameRefVariablePointsToFunction(NameRef)

t_NameRef NameRef; Stores within the NameRef the fa· that the variable
associated with it is a pointer to a fun·ion. Z Notes:

The NameRef mu‚ be valid.

Utilities/Name Space
../liblqutil/namespace.c

API t_NameRef
LQU_SetNameTypeAndVariable(theNameRef, theNameType, theVariable)

t_NameRef theNameRef;
t_NameType theNameType;
void *theVariable;

Associates the given NameRef with the given Vari-
able, fir‚ changing the remembered type of the
NameRef. You should pass a pointer to the variable
you want to use. The variable itself should be ‚atic

if there is any chance of the Name within the NameSpace being used after the variable

LQU_GetNameFromNameRef Utilities/Name Space, p. 78
LQU_GetTypeFromNameRef Utilities/Name Space, p. 78
LQU_NameRefIsValid Utilities/Name Space, p. 79

has gone out of scope. Z Returns: The given NameRef, possibly changed, is returned.
Z Example:

‚atic int MyToes = 10;
LQU_SetNameTypeAndVariable(NameRef, LQU_NameType_Integer, &MyToes);

Z See Also: LQU_SetNameVariable ‡ (below).

Utilities/Name Space
../liblqutil/namespace.c

API t_NameRef
LQU_SetNameValue(NameRef, Value)

t_NameRef NameRef;
void *Value;

Sets the value of the variable associated with the
given NameRef. Z Returns: the given NameRef.
Z See Also: LQU_SetNameVariable ‡ (below);
LQU_SetNameTypeAndVariable

‡ (previous page).

Utilities/Name Space
../liblqutil/namespace.c

API t_NameRef
LQU_SetNameVariable(NameRef, Variable)

t_NameRef NameRef;
void *Variable;

Associates a variable with a Name that you have
retrieved from a Name Space. You should pass a
pointer to the variable, which mu‚ remain in scope

for as long as the Name can be accessed. Z Returns: the given Name Reference. Z See
Also: LQU_SetNameTypeAndVariable ‡ (previous page); LQU_StringToNameRef‡

(below).

Utilities/Name Space
../liblqutil/namespace.c

API t_NameRef
LQU_StringToNameRef(theNameSpace, theName)

t_NameSpace *theNameSpace;
char *theName;

Treats the given ‘theName’ ‚ring as a Name, and
looks this up in the given NameSpace. If the
NameSpace allows ne‚ed NameSpace references,

the Name is allowed to have any number of prefixes consi‚ing of a name followed by a
dot; the name mu‚ be the name of a NameSpace in the NameSpace being searched, and
in this case the search proceeds using the newly found NameSpace on the re‚ of the
‚ring. Z Returns: the NameRef, or null
Z Example:

If given the ‚ring ‘Children.Boys.Simon’, and a NameSpace called
‘People’, LQU_StringToNameRef will search ‘People’ for a NameSpace
called Children, and if that should succeed, it will then search
‘Children’ for a NameSpace called ‘Boys’.
If this la‚ search succeeds, the namespace ‘Boys’ is searched
for ‘Simon’, and the result, either the NameRef called ‘Simon’ or
null for failure, is returned.

Z See Also: LQU_SetNameTypeAndVariable ‡ (previous page); LQU_GetVariableFrom-
NameRef

‡ (p. 79).

LQU_GetVariableFromNameRef Utilities/Name Space,
p. 79

LQU_SetNameTypeAndVariable Utilities/Name Space,
p. 81

LQU_SetNameVariable Utilities/Name Space, p. 82
LQU_StringToNameRef Utilities/Name Space, p. 82

Utilities/Numeric Range

This category provides some routines for maniplating an ascii representation of
numeric ranges, and corresponding in-memory data ‚ru·ures. It’s useful for such
things as li‚s of pages to print (5,12-20,37-), and is used by some of the lq-text clients
to determine which matches to process.

LQU_LargerThanRangeTop 83
LQU_NumberWithinRange 83
LQU_StringToRange 83

Utilities/Numeric Range
../liblqutil/range.c

API int
LQU_LargerThanRangeTop(n, Range)

CONST int n;
CONST t_Range *Range;

Use for e‹ciency, to determine whether a given
number is larger than the large‚ value accepted by
the given range. Passing a range that ended with a
hyphen (for example, 1,2,5–7,12-) will always pro-
duce a zero result, even if n falls within a ‘hole’ in the

range, as for 4, 8, 9, 10 and 11 in the example here. Z Returns: 1. 0 if the number is not
entirely beyond the given range 2. 1 otherwise Z See Also: LQU_StringToRange‡

(below); LQU_NumberWithinRange ‡ (below).

Utilities/Numeric Range
../liblqutil/range.c

API int
LQU_NumberWithinRange(n, Range)

CONST int n;
CONST t_Range *Range;

Determine whether a given number, n, falls within
a given range. A range is a li‚ like ‘–4,12–30,40,100-’,
to match ¶ 1, 2, 3, 4, 12, 13…29, 30, 40, 100, 101, 102,
… ¶ A space can be used in‚ead of a comma. The
range generates the range ‘–1,2-’, matching all num-

bers Z Returns: 1. 1 if the n is within (matched by) the given range 2. 0 otherwise Z See
Also: LQU_StringToRange‡ (below); LQU_LargerThanRangeTop‡ (above).

Utilities/Numeric Range
../liblqutil/range.c

API t_Range *
LQU_StringToRange(String)

CONST char *String;

Converts the given ‚ring to a range; integers can
subsequently be matched again‚ the range with
LQU_NumberWithinRange. Z Returns: 1. a
pointer to a range on success 2. 0 otherwise Z Errors:

A null ‚ring argument produces a fatal error. Syntax errors are also fatal. Z See Also:
LQU_LargerThanRangeTop

‡ (above); LQU_NumberWithinRange ‡ (above).

LQU_LargerThanRangeTop Utilities/Numeric Range, p. 83

LQU_NumberWithinRange Utilities/Numeric Range, p. 83
LQU_StringToRange Utilities/Numeric Range, p. 83

Utilities/Strings

The routines in this category are for general ‚ring handling; in addition, <glo−
bals.h> contains definitions for streq and strncmp, after an idea by Henry
Spencer; these are not currently documented here.

The join‚r routines are for joining two or three ‚rings together to make a single
longer one; these are useful for con‚ru·ing full pathnames out of a dire·ory and a
filename.

LQU_DownCase 85
LQU_ReverseString 85
LQU_StringContainedIn 86
LQU_cknat‚r 86
LQU_c‚ring . 86
LQU_join‚r2 87
LQU_join‚r3 87

Utilities/Strings
../liblqutil/downcase.c

API char *
LQU_DownCase(String)

CONST char *String;

Returns a pointer to a ‚atic bu⁄er containing a copy
of the given ‚ring in which all upper-case charac-
ters have been converted to lower case. The bu⁄er
grows automatically, and requires that the given

String be nul-terminated. Z Notes: Relies on corre· support from isupper, as described in
·ype(3). On some sy‚ems, this fun·ion returns garbage if a chara·er with the top bit
set is te‚ed, and locale has not been set. Z Bugs: The argument is not checked to see if it
is a null pointer.

Utilities/Strings
../liblqutil/rev‚r.c

API char *
LQU_ReverseString(‚art, end, type)

char *‚art;
char *end;
int type;

Reverses the bytes in the given ‚ring; if ‘type’ is
even, the individual whitespace-delimited words are
reversed in place; if type is even, he entire ‚ring is
reveresed. The process is repeated with (type - 1)
until type is zero. Hence, a reverse type of zero does

nothing, and a reverse type of one reverses the ‚ring in place; a reverse type of 2 will
reverse the order of the words in the ‚ring; a reverse type of 3 is the same as a reverse type
of one, and a reverse type of 4 leaves the ‚ring in place. Values greater than two are thus
pointless, but are allowed for convenience. Z Returns: the given ‚art pointer; the ‚ring is
reversed in place. Z Notes: The ‚ring mu‚ be in read-write memory; to reverse a ‚ring
that was a manife‚ con‚ant at compile time, you mu‚ fir‚ copy it into a dynamically
allocated bu⁄er. ¶ This fun·ion is used by lqkwic, which contains some examples.

Z Errors: An internal error (always fatal) is produced if either ‚art or end is a null pointer,
or if end < ‚art (implying a ‚ring of negative length), or if the type argument is outside
the range from zero to eight inclusive.

Utilities/Strings
../liblqutil/‚rings.c

API int
LQU_StringContainedIn(ShortString, LongString)

CONST char *ShortString;
CONST char *LongString;

Determines whether the given ShortString is con-
tained anywhere in the LongString, and, if so,
returns non-zero. Z Returns: 1. 1 if the shorter

‚ring is contained in the longer, or if the ‚rings are equal, of if ShortString is of length
zero 2. 0 otherwise Z Notes: See ‚r‚r for a more e‹cient way to do this. Some Unix sys-
tems do not have ‚r‚r, though.

Utilities/Strings
../liblqutil/cknat‚r.c

API int
LQU_cknatstr(‚r)

CONST char *‚r;

Checks whether the given ‚ring argument repre-
sents a natural number; that is, an optional plus or
minus sign followed by one or more decimal digits.
Leading whitespace, as reported by the isspace

macro, is ignored, but no trailing whitespace is allowed. Z Returns: Zero if the match fails,
and one if it succeeds. Z Bugs: 1. Should return a pointer to the fir‚ implausible chara·er.
2. Should probably allow trailing whitespace. 3. Does not check its argument for a null
pointer.

Utilities/Strings
../liblqutil/c‚ring.c

API char *
LQU_cstring(theString)

CONST char *theString

Converts any C escape sequences in the given
‚ring, and returns the result in a freshly malloc’d
copy. The escape sequences currently recognised
are \a (audible alert), \e (escape), \n (newline), \t

(tab), \b (backspace), \r (return), \f (form feed), \\ (backslash), \’ (single quote) and \"
(double quote). The vertical tab (\v) is converted into a newline. The o·al \ddd notation
is under‚ood; there can be up to three o·al digits after the backslash. If you need to fol-
low an o·al escape with an ascii digit, you should use all three digits, with leading zeros
if necessary. The ansi C \xDD hexadecimal notation is not supported. Z Returns: A
pointer to a freshly allocated bu⁄er; it is the caller’s responsibility to free this. If a null
pointer was passed as an argument, however, a null pointer is returned. Z Errors: Warns if
an unrecognised escape sequence or trigraph was found Z Bugs: Has support neither for
hexadecimal escapes (\xDD) nor for trigraphs (perhaps this is a feature). There is no way
to include ascii nul (\000) into a ‚ring, as this terminates it.

Utilities/Strings
../liblqutil/join‚r2.c

API char *
LQU_joinstr2(s1, s2)

CONST char *s1, *s2;

Returns a ‚ring consi‚ing of the concatenation of
the two given ‚rings. The result is freshly malloc’d,
and it is the caller’s responsibility to free this ‚or-
age. Null ‚rings are treated as if they were empty

‚rings. Z Returns: The concatenation of the three given arguments. Z Errors: Fatal error
if memory is exhau‚ed. Z Bugs: The name is a little odd.
Z Example:

char *theFile = LQU_joinstr2(dire·oryName, "/fileName");

Z See Also: LQU_joinstr3‡ (below).

Utilities/Strings
../liblqutil/join‚r.c

API char *
LQU_joinstr3(s1, s2, s3)

CONST char *s1, *s2, *s3;

Returns a ‚ring consi‚ing of the concatenation of
the three given ‚rings. The result is freshly mal-
loc’d, and it is the caller’s responsibility to free this
‚orage. Null ‚rings are treated as if they were

empty ‚rings. Z Returns: The concatenation of the three given arguments. Z Errors:
Fatal error if memory is exhau‚ed. Z Bugs: The name is a little odd.
Z Example:

char *theFile = LQU_joinstr3(dire·oryName, "/", fileName);

LQU_joinstr3 Utilities/Strings, p. 87

