Chapter 2

Client/Server Architecture

This chapter describes the main concepts of Client/Server networking, gives some code examples and discusses some of the implementation and programming issues involved. The second half of the chapter describes the World Wide Web architecture, and discusses the differences between traditional Client/Server networking and Web-based systems. If you have worked with databases or other networked systems before, but have not implemented a web-based system, you will find the discussion particularly useful.

@@production: if you have to split code samples across multiple pages, it's best to do so where there is a blank line.  Also, in an ideal world, i'd use the main text font, in italic, for comments (but making sure that the asterisks are all aligned vertically for multi-line comments!!!) -- Liam @@

The term Client/Server is in widespread use, but there are several kinds of Client/Server computing in use, and it’s important to understand them. If you are a programmer already familiar with Client/Server concepts, you should at least skim this section to make sure that this book uses the terms in the way you expect.  We will be using this and related concepts heavily later, and there are important differences between web-based database systems and local area network systems (for example) that need to be carefully understood and considered.

At the end of this chapter there are some exercises for the enthusiastic, and a Further Reading list for the interested.

Computers as servers

The first kinds of Client/Server system had a single computer running a server; that is, providing some kind of service to other computers.  The client computers would use the service over a network, either local or wide area. An example of such a service might be a hospital patient record system or an airline booking system. Figure 2.1 shows this architecture.

 [TODO insert Figure 2.1 here]

Server Processes

Later, particularly as multi-tasking systems such as Unix became more widespread, the idea evolved, and the terms client and server were used not just to refer to entire computers, but also to individual processes running on those computers. Today, a typical Unix system runs anywhere from a dozen to several thousand server processes all at the same time.  Figure 2.2 shows this slightly more sophisticated architecture. Notice how a client could be running on the same computer as the server or on a different one.

[TODO insert figure 2.2 here]

Networks and Protocols

A protocol addresses the question of how the client and server communicate with each other, or, if you prefer, what language they speak.

When the client and server are not on the same computer, some kind of network connection is needed, such as a serial cable or an Ethernet link.  This book isn’t about networking hardware; the important thing is that there is some kind of physical connection that carries the communication language between the client and the server.

The technical name for the language is protocol, of course. A simple example of a protocol might be:

client connects to server

server says HELLO

client says GET mail.txt
server says SENDING mail.txt size: 3091 bytes

followed by 3091 bytes of data

client says OK
client says GET some-other-file
and so on.
Protocols and APIs

The earliest protocols were all devised on a purely ad hoc basis. The programmers who wrote the server software would define a set of commands, sometimes in binary and sometimes in ASCII (or EBCDIC or BAUDOT!) and any programmer working on client software would have to learn the protocol, often with little or no documentation.

Sometimes the server programmer would provide an object library for developers of clients to use. This would define an Application Programmer’s Interface, or API: a documented set of procedure calls, often with names such as startConnection, getFile, listFiles, stopTransfer, and so forth, that a programmer would call. These procedures would then handle the task of sending the proper protocol sequence over the connection.

Protocol Layers

The computing world advanced, slowly, and learned the concept of layers.  The idea or a layer is that one API can be written entirely in terms of other APIs, giving the benefit that if the underlying protocol changes (perhaps because of a new kind of network hardware) only the lowest level API need be changed. With dynamic linking (e.g. on Unix System V or SunOS in the mid 1980s, or on Microsoft Windows much later) the client programs might not even need to be changed at all: they automatically find the latest version of the library at runtime.

This means that if I need to write a network protocol to allow clients to connect to my Inventory System (for example), I can provide an API with calls such as HowManyDoWeHave(partNumber).  The code might use a lower-level API to send requests to the server such as QUANTITY.  Of course, the lower-level API is itself sending data such as 14 bytes follow, but when I write my API I don’t need to think about that at all, and indeed my API still works if that lower-level protocol is changed completely.

The idea of a layered protocol is not a new concept, but we will be using it a lot later.  

API Example

Let’s look at an example of how to write a layered networking API, at first using a proprietary protocol. Later we will see how XML concepts affect our design.

We’ll use the C Programming Language for this short (and incomplete) example, because it has traditionally been the language of choice for low-level APIs.

Our example API lets a programmer write a client that connects to an inventory control system that keeps track of stock levels in a warehouse or department store. Our client will be a second-class citizen with read-only access; a full API would allow a client to change the database on the server.

Let’s start by considering the operations that our client program might need to perform. We will need to start a connection to the server, and to end it again.  We will need to ask how many items there are for a given part.  We might also want to search for a part number by entering its description.

When the client wants to connect to the server, our library needs to be told the name of the server.  For this example, we’ll assume that the server name is sufficient to establish a connection, although if we were using a dial-up connection we might also need a telephone number.

The convention with a C API is to use a prefix in front of function names; we’ll use SIP for the Simple Inventory Protocol.  Let’s start by declaring these functions1 now:

1 Strictly speaking most C functions are actually subroutines, because they can have side-effects, but the usual C terminology is to call them functions.
SIPstatus SIPconnect(const char *serverName, SIPhandle *result);

This declaration specifies a function called SIPconnect; the function is called with two parameters, serverName and result. The function returns a value, which is of type SIPstatus; this will simply be a number with zero meaning success, and other numbers indicating which error occurred to prevent success.  The function is only declared here; the code that implements the function will appear elsewhere.

After connecting, at some point the client will need to disconnect:

SIPstatus SIPdisconnect(SIPhandle session);

Once the client is connected, it will want to ask how many socks (or whatever) are available in our warehouse:

SIPstatus SIPquantityAvailable(SIPpartNo partNo, int *result);

Notice that SIPquantityAvailable returns a success code; the actual value we are interested in is written into the integer whose machine address is passed as the last parameter, result. This is so that all of the SIP functions can return a status in a way that’s easy for the programmer to remember. A network programmer has to be aware that the network connection could be lost at any time (for example, the user unplugged the modem, or a remote server was struck by lightning). Returning a status code explicitly helps to remind programmers that the value they requested might not have been available, and hence to write more robust code.

A special type was defined to represent a part number, SIPpartNo; although this isn’t strictly necessary, it shows how to use the typing mechanisms in the C Programming Language to get a slightly more robust API. The type definition helps in two main ways:

First, it means that if a programmer tries to call SIPquantityAvailable with an integer (say) instead of the correct type, most C compilers will generate a warning or error at compile time. The programmer is saved debugging time, and our library won’t crash (and won’t be blamed!).

Secondly, and more importantly, it means that we can change the way we represent a part number without changing our API.  We can start out using strings to hold part numbers, and later use pointers to complex structures (for example), and the user of the SIP API merely has to recompile their code that calls our functions.

Of course, we need to supply the programmer with a way of obtaining a SIPpartNo object:

SIPpartNo SIPstringToPartNo(const char *theString);

Or, if we want to be fancy,

SUPstatus SIPgetPartNo(const char *theString, SIPpartNo *result);

This second form would let SIPgetPartNo connect to the server to perform the transformation, although it’s hard to justify wanting to do that.  We’ll keep the simpler form!

Finally, it would be useful for the programmer to be able to print out human-eradable error messages based on our error codes

const char *SIPgetStatusDescription(SIPstatus status);

We will put all of these function prototypes in a C header file, sip.h, along with definitions for the C types we have mentioned:

typedef enum {

    SIP_OK,

        /* OK: no error */

    SIP_ERR_HandleIsClosed,

        /* e.g. someone tried to use a connection handle after
         * they had called SIPcloseConnection on that handle
         */

    SIP_ERR_BadHandle,

        /* e.g. passing a null pointer instead of a handle.
         * Passing garbage as a handle will be more likely to
         * produce a core dump or a crash, but NULL is a pretty
         * error and worth catching.
         */

    SIP_ERROR_NoReplyFromServer,

        /* The client library got bored of waiting for the
         * server to respond.  Perhaps networking is down?
         * Right now, there is no way to configure the timeout
         * without recompiling the source; it defaults to five
         * minutes.
         */

    SIP_ERROR_BadPartNumber,

        /* A null pointer, an empty string, or a value not
         * obtained by stringToPartNo was passed to a SIP
         * function.

         */

    SIP_ERROR_InsufficientMemory,

        /* There was not enough memory available to complete
         * the request.  You might also get this error if you

         * replace the system malloc() function with one of your
         * own that has an incompatible calling convention.
         */

    SIP_ERROR_BadResultPointer,

        /* A NULL pointer for a result value was passed to a SIP
         * function; it is not generally possible to detect other
         * sorts of bad pointer, except that an unexpected area
         * of memory will be overwritten by the SIP function.
         */

    SIP_ERROR_OtherError

        /* An error occurred that was not categorized as one of

         * the above errrors.

         */

} SIPstatus;

An experienced network programmer will see at once that this protocol is synchronous; that is, these function calls will block until they get a reply from the server. This design is not suitable for use with a graphical user interface: while the program is waiting for a reply from the server, it is ignoring the user’s mouse-clicks.  We will address that later in this chapter, with the server example using select().

Since the functions all use a single shared connection, they cannot handle connections to multiple servers, except one at a time.  This also makes the design difficult to use in a multi-threaded environment, since one thread could try to open a new connection while another was still using the current one.  We can fix this easily by adding an extra argument to the functions, the connection handle, and we’ll do that in our implementation.  The implementation may still not be thread-safe, but at least it could be made so with the improved design.

When a program calls one of these functions, a message will be sent to a server.  The message is simply a string, a stream of bytes, since that is the nature of all network messages.  It is tempting to say that the message should be in XML; for an example this small, it would be simpler to use plain text. We’ll start with plain text and move to XML later.

For our purpose here, we’ll implement just one function (the complete code is available online):

#define SIP_PROTOCOL_GET_QTTY 'n'

SIPstatus

SIPquantityAvailable(

    SIPhandle h, /* handle to our network connection */

    SIPpartNo partNo, /* the part number */

    int *result /* number available stored here */

)

{

    /* First, check that the server handle we have been passed is
     * at least plausible:
     */

    SIPstatus status = SIP__handleIsOK(h);

    if (status != SIP_OK) {

        return status; /* fail, probably bad handle */

    }

    /* now check that the result pointer isn't NULL: */

    if (result == (int *) NULL) {

        return SIP_ERROR_BadResultPointer;

    }

    /* If the result pointer is OK, let's set the result to zero

     * before doing anything more.  This may help an API programmer
     * to debug an error, since if the result pointer is invalid,
     * the program will crash (dump core on Unix) at this line,
     * not in the lower-level API that we are about to call.
     */

     *result = 0; /* default: none available */

    /* check that the part number supplied is plausible;

     * although we didn't tell the programmer using our API,
     * the part number is really a pointer to a string right now.

     * We will simply check the pointer isn't NULL and that the

     * string opinted to is at least one character long:

     */

    if (!partNo || !*(char *)partNo) {

        return SIP_ERROR_BadPartNumber;

    }

    /* Ask the remote server to tell us how many are available;

     * one possible error here is that the server has
     * disconnected us.
     */

    status = SIP__Send(h,

        SIP_PROTOCOL_GET_QTTY, strlen(partNo), partNo
    );

    if (status != SIP_OK) {

        return status;

    }

    /* Now we sit and wait for the server to send a reply, and
     * when it does, pass that reply straight back to the caller.
     * SIP__Send and SIP__Await are internal functions, not visible
     * to the API programmer.  If the server doesn't reply in a
     * reasonable time, or sends back an error code, SIP__Await
     * will return an error, which we simply pass back.

     */

    return SIP__Await(h, SIP_PROTOCOL_INTEGER, result);

}

This example function, like most C code, consists of lots of error checking followed by a call to a couple of lower-level functions that actually do the work.  These functions, in turn, will almost certainly start by checking their arguments before calling system-provided routines such as sendto or read. All this error checking is very important: it's especially difficult to debug network code, because you have to work out whether the error is on your system or the remote one, or somewhere between. Worse, many network problems are time dependent, and are thus hard to reproduce. The more carefully the library code checks for errors, the better chance the library has of catching a mistake that a programmer made, and the more robust the library will appear to be as a result.

The lowest level functions have a double underscore in their names, since, unlike Java or C++, the C Programming Language does not have classes with private members.  A C function can be declared static, but cannot then be shared between the separate source files that implement a library.  Our compromise is to use obscure names.

The code for SIP__Send probably looks a little like this:

SIP_Status

SIP__Send(SIPhandle h,

    int type,

    size_t nBytes,

    const char *data
)

{

    char *buf = malloc(nBytes + 4);

    if (!buf) return SIP_ERR_INSUFFICIENT_Memory;

    /* build up a string to send: */

    (void) snprintf(buf, nBytes + 4, "%uc%c%s\n",

        nBytes, type, data

    );

    /* send the string over the socket */

    if (sendto(SIP__FD(h), buf, nBytes + 4) == nBytes + 4) {

        return SIP_OK;

    } else {

        /* not shown: check the result of write() and return an
         * error if approriate.

         */
    }

}

This code sends a single byte containing the number of bytes in the data, followed by the byte indicating the kind of message, followed by the data (the part number in this case, which is represented as a string).

The code that waits for a reply tries to read a single byte, and uses that to determine how many bytes of data will follow, reading exactly that many bytes.

The protocol is very simple, but the binary length count byte means that you can't easily use the server with telnet; most modern protocols use plain text so that they can be debugged more easily.

The single byte length count means that we can only cope with messages no longer than 255 bytes, and using a single byte as the command we can have at most 256 different messages.  That’s more than enough for this example, of course, and it could be extended fairly easily, for example by using the character x to indicate an extended format message type, followed by the real message type.  But then the protocol would start to get more complex than this example warrants!

The implementation shown here has the very unfortunate property that a call to any of the SIP functions could block awaiting data from a remote server. If the server is down, or if it crashes while we're connected to it, some networking libraries can wait several hours before recovering.  A better implementation would use the poll or select functions to read data only when it was available, and would use asynchronous callbacks to supply results back to the caller when they were available.  The server code works asynchronously, and is described in the next section.

If you download the complete sample SIP client and server, you can compile them and run them like this on Linux, Solaris 2, FreeBSD or other Unix-style systems:

$ gzip -d < sipsample.tgz | tar xvf -
(this will extract files into a new sipsample directory)

$ cd sipsample
$ make
You will see the program being compiled here; if you see errors at this stage, or if the next step fails with a message such as sipclient: no such file or directory, or cannot execute, consult the readme file for possible solutions.

You can now start the server, and then run the client:

$ ./sipserver &
SIP Server waiting on localhost port 5103

$ ./sipclient "Argyle socks"

sipclient: connected to server localhost on port 5103

sipclient: requested quantity for part "Argyle socks"

sipclient: received reply from server: SIP_OK

sipclient: quantity available: 4,005

sipclient: closing connection to server

$ 

The server is still running, and you can connect to it again; the server occasionally reduces the quantity of socks available, as if they are being shipped out of the warehouse, so you may get a different number reported the second time.

When you get bored of this exercise, you should stop the server:

$ ./sipstop
sipstop: connected to server localhost on port 5103

sipstop: requested server shutdown

sipstop: received reply from server: SIP_OK

If you are paranoid, you can test that the server stopped:

$ ./sipclient "Argyle socks"

sipclient: could not connect to server localhost on port 5103

sipclient: error: connection refused (no server running?)

$ 

In the next section we'll see how the World Wide Web architcture addresses some of these issues and differs from the tradidional Client/Server model described here.

Summary: Traditional Client/Server Model

This section has introduced a number of terms: Server, Client, Protocol, Synchronous Protocol, API (application programming interface).  We also looked at how a sample layered API might be constucted.

One server can handle many clients, but a client usually only talks to a single server;

Clients connect once to a server and remain connected until the work is done;

Library code is often supplied in C, and is often synchronous, so that function calls will block until they are complete.

In the next section we will talk about asynchronous networking; once we've done that, we'll be ready to move on to programming for the World Wide Web.

Asynchronous Networking

This section describes asynchronous networking, and discusses the main programming issues involved in implementing and using it. 

The SIP example client in the previous section is synchronous: the code is always in control, and the control flow is fixed. The client sends a request to the server, then waits for a reply.

But suppose we wanted to implement a message that the server could send to all connected clients, perhaps to say that a new part was available. The clients would not be expecting to receive this message, and would not be listening to the network connection. Then, when they sent a message to the server and went to wait for the reply, they’d find the unexpected message sitting there instead of the expected reply, and they would go horribly wrong.

Another problem with the synchronous design was that the program could only be doing one thing at a time, and hence could not respond to mouse clicks (for example).

An asynchronous network client handles messages from the server whenever they happen to arrive. It never blocks waiting for input, and can therefore almost always respond to user input quickly. To do this, the program uses two main techniques: an Event Model and Callback functions.

Event Models

The idea behind the Event Model is that a single piece of code – usually hidden in system-supplied library functions – reads and interprets user actions such as mouse clicks and keyboard presses, along with window system actions such as uniconifyig a window or bringing up a menu. That code then presents all of these things to the programmer as a stream of generated objects called Events. The programmer then only has to learn about a single type of structure, the event, and how to handle it.

An event-driven program might contain a routine that looks a little like this:

while (e = getNextEvent()) {

    switch (e) {

    case Ev_UserPressedQuitButton:



handleQuit();



break;

    case Ev_KeyPress:

        if (e->getkey() == KEY_F1) {

            handleHelpKey();

        }

    . . .

    }

}

From this discussion, it should be no surprise that a program with a graphical user interface could use the same event mechanism to handle network I/O.  It could in principle use the same mechanism to read XML, although in practice it’s unusual to have a window event loop that also reads XML. It is common to read XML using that same user interface event loop to detect when XML data becomes available on a network connection (a socket) and to pass that data to an XML parser or other handling routine. That parser would in turn be quite likely to use an event model of its own: XML events might include ElementStarted, ELementEnded, Comment, ProcessingInstruction, and many others. We shall return to this topic in Chapter 4 of this Part of the book, Reading XML in a Program.

Callbacks and Hooks

A callback is a function or piece of code that is given by a programmer's code to a library or system routine; some time later, the library calls the programmer's function. Most windowing systems make heavy use of callbacks, and networking programs also often use this model.

A hook is a function that a programmer can override, by redefining it.  This technique is more rarely used, because it gives the library designer less control.

With a callback-based API, the event loop sequence shown above is replaced entirely, and instead the programmer registers a handler function for each event; the handler is a callback:

main()

{

    initialize();

    . . .

    RegisterHandle(Ev_UserPressedQuitButton, handleQuit);

    RegisterHandle(Ev_KeyPress, handleKeyPress);

    . . . .

    runTheMainEventLoop();

    cleanup();

    exit(0);

}

The handler for the key press, HandleKeyPress, might look like this:

int

HandleKeyPress(

    Event ev
)

{

    if (ev->getjey() == KEY_F1) {

        handleHelpKey();

    }

}

This function isn’t actually called anywhere in the programmer’s code!  Instead, we pass the name of the function (or, strictly speaking, its address) to the RegisterHandler function, which stores it in a table.  Whenever the code in runTheMainEventLoop generates a keypress event, it looks in its table and calls the appropriate function. The library's event handler calls our routine back for us, and hence the name callback.

Asynchronous Networking Example

Our synchronous example was the SIP client. It’s pretty clear that you don’t want a server to be synchronous, though, since it probably has to listen to multiple clients at the same time. We will show an outline for an asynchronous server.

Our server will handle network events but not window system ones.  Integrating the code into a windowing library is usually very easy, but it is a little different on the X Window System than under Microsoft Windows or the Macintosh. Furthermore, our server has no need for a user interface.

The server needs to handle incoming connections, and then process requests on each connection. We will use the BSD Networking API, with its select() function, mostly because it's simpler to describe than the most common alternative, poll.

The code will tell select which network connections (sockets) to monitor, and how long to wait. The call to select will then block waiting for input on one or more socket, or until the timeout happens. If select tells us that input is available on the main server socket, it means that a new connection has arrived.

If you have access to Linux or Unix, try looking at the manual page for select() in section 2 of the unix Programmer’s Manual:

$ man 2 select

or, on Solaris 2, you may need to do

$ man -s 3n select

The pseudocode for our server might look like this:

handleIncomingConnection(c)

{

    socket newConnection = accept(c);

    arrange to listen for incoming data on newConnection
}

server

{

    for (;;) {

        int nReady = select(incoming, outgoing, errors, timeout);

         if (nRead == 0) {

             /* handle a timeout here */

             . . .

             continue; /* loop again */

         }

         /* check for an incoming connection */

         if (FD_ISSET(incoming, mainSocket)) {

             nReady--; /* it was counted in the total */

             handleIncomingConnection();

         }

         /* now loop through each file descriptor,
          * processing incoming messages where they are
          * available
          */

         for (i = 0; nReady > 0; i++) {

             if (FD_ISSET(incoming, i)) {

                 --nReady;

                 processRequest(i);

             }

         }

    }

}

Here is a brief fragment of a working (but fairly minimal) IRC server written in perl; the full server is irc++.pl and is also available for downloading.

use Socket;

use Fcntl;

use English;

use FileHandle;

my $NewNameID = 0;

sub getNewName
{

    ++$NewNameID;

    return "nn$NewNameID";

}

sub addPort
{

    # This code adds the given port to $rbits, which is a binary
    # string with the nth bit set if we want to listen to
    # file descriptor n.  It also saves the bit mask in $fdMap,
    # to simplify processing later.
    my ($port, $func, $argument) = @_;

    my $fd = fileno($port);

    vec($rbits, $fd, 1) = 1;

    # now build the reverse map:
    my $tmp = "";

    vec($tmp, $fd, 1) = 1;

    $fdMap{$tmp} = $port;

    $funcMap{$tmp} = $func;

    # Finally, make a place to store network input:
    $bufferPlace{$tmp} = "";

    return $tmp; # in case the caller wants it, return it

}

sub printLine
{

    # a routine for testing
    my ($text, $arg, $fh) = @_;

    print "    **** $arg: [$text]\n";

    return 1; # 1 means OK, undef means disconnect

}

sub server
{

    my ($ServerBit) = @_;

    my $timeout = 300; # time in seconds to wait

    $errbits = ($rbits | $wbits);

    for (;;) {

        my $nfound;

        my $pattern;

        my ($rout, $wout, $eout);

        # the following call to select() will block until

        # (1) input is available, or

        # (2) the timeout happens, or

        # (3) a socket that was blocked for writing becomes free, or

        # (4) an error occurs.

        $nfound = select(

            $rout=$rbits,

            $wout=$wbits,

            $eout=$errbits,

            $timeout

        );

        if ($nfound == 0) {

            print STDERR "timeout after $timeout seconds\n";

            next;

        }

        my $buffer;

        for $pattern (keys(%fdMap)) {

            if ($pattern eq $ServerBit) {

                # Either an incomming connection is there,
                # or in some versions of perl, there seems
                # to be a bug whereby this bit gets set when
                # there is nothing to read.
                if (($pattern & $wout) ne "") {

                    print STDERR "eek: the wout case happened\n";

                } else {

                    # either there is a connection,

                    # or the call to listen will not block

                    acceptConnection($fdMap{$pattern});

                }

            } elsif (($pattern & $rout) ne "") {

                # There is data available for reading.
                # Since the network can split up data en route,
                # we might not have a complete message yet,
                # so we save up what we've got in $bufferPlace
                # until we have a complete line.
                my $nRead;

                $nRead = sysread($fdMap{$pattern}, $buffer, 4096);

                if (!defined($nRead)) {

                    # print STDERR "nothing to read\n";

                    next;

                }

                if ($nRead == 0) {

                    print STDERR "eof on port\n";

                    close($fdMap{$pattern});

                    delete $fdMap{$pattern};

                    $rbits &= ~$pattern;

                    $errbits &= ~$pattern;

                    $wout  &= ~$pattern;

                } else {

                    # convert DOS-style CR LF to a single line feed:

                    $buffer =~ s/\r\n/\n/gmsx;

                    $buffer =~ s/\r/\n/gmxs;

                    # append what we have just read to the

                    # data we've already read, that's waiting

                    # for us to receive a complete line

                    $bufferPlace{$pattern} .= $buffer;

                    # process any complete lines received:

                    while ($bufferPlace{$pattern} =~

                                   /^([^\n]*)\n(.*)$/){

                        my $str = $1;

                        $bufferPlace{$pattern} = $2;

                        # note: using $1 and $2 is much more

                        # efficient than using $`

                        # fetch the callback function associated

                        # with this network connection:

                        my $func = $funcMap{$pattern};

                        # call the function:

                        if (! &$func(

                            $str,

                            $arguments{$pattern},

                            $fdMap{$pattern}

                        ) ) {

                            close($fdMap{$pattern});

                            delete $fdMap{$pattern};

                            $rbits &= ~$pattern;

                            $errbits &= ~$pattern;

                            $wout  &= ~$pattern;

                            last;

                        }

                    }

                }

            }

        }

    }

}

sub test

{

    addPort(\*STDIN, \&printLine, "STDIN");

    server();

}

sub acceptConnection

{

    my ($Server) = @_;

    my $paddr;

    my $Client = getNewName();

    $paddr = accept($Client, $Server);

    if (!defined($paddr)) {

        return;

    }

    my ($port, $iaddr) = sockaddr_in($paddr);

    my $name = gethostbyaddr($iaddr, AF_INET);

    if (!defined($name)) {

        $name = inet_nota($iaddr);

    }

    print STDERR "connection from $name [" .

               inet_ntoa($iaddr) . "] port $port\n";

    # set it to nonblocking so that sysread() in the

    # server routine will return whatever data has already

    # arrived, instead of blocking until

    # the amount we request becomes available:

    fcntl($Client, F_SETFL, O_NONBLOCK()) or die "fcntl failed, $!";

    # turn off perl's output buffering (perl 5 only)

    autoflush $Client 1;

    # get ready to listen for incoming data

    my $clientNumber = $#clients + 1;

    addPort($Client, \&ircCommand, $clientNumber);

}

# now try it:

test();

This is rather a long example.  If you run it (perhaps by downloading the code for this book rather than typing it in!) it will simply sit waiting for you to type lines, and then print them.  You may find it does not work on non-Unix-like operating systems that treat input devices such as keyboards radically differently from network connections. There is no real reason for such bugs: select() and read() should work with every kind of file, but some operating systems are broken.

The example printed here omits some declarations to save space; the version for download is complete, and there is also a more complex example that is rather more interesting to experiment with. All the versions, however, work in the same way: they collect incoming network data and then, whenever they have received a complete line, they process it.  If you try the longer example, the IRC server, you can test it using the telnet program, or with any standard IRC client, connecting to your local computer on port 5103.

Summary: Asynchronous Networking

The main difference from the synchronous networking we discussed earlier is that the code is no longer organised around a clear control flow. Instead of ‘when the user does this, do these actions’, we have a list of actions to be done when each individual event occurs.

In the next section we will use the concepts we have introduced in this chapter to talk about the architecture of the World Wide Web.

World Wide Web Architecture

The previous two sections showed a ‘traditional’ Client/Server architecture, in which one or more clients stay connected to a server for an entire session, performing multiple transactions.

The World Wide Web uses a very different, and much simpler, architecture. A web client such as a browser (Netscape Communicator, say) connects to a web server and makes a single request. The server responds, either refusing or satisfying the request, and then disconnects the client.

The protocol used is the HyperText Transfer Protocol, HTTP.

Since HTTP uses ASCII (or ISO 8859-1/Latin 1), you can connect to a web server with a program such as telnet and try it yourself. Web servers usually listen on IP port number 80, so you=ll have to specify that.  Then type the following HTTP request followed by a blank line (press Return or Enter twice in a row).  The blank line ends the HTTP request.

$ telnet www.groveware.com 80
GET / HTTP/1.1

Accept: */*

Host: localhost

    (then press RETURN twice to make a blank line)

You should see a reply a bit like this:

HTTP/1.1 200 OK

Date: Sat, 09 Sep 1999 22:52:15 GMT

Server: Apache/1.3.6 (Unix)  (Red Hat/Linux)

Last‑Modified: Wed, 07 Apr 1999 21:17:54 GMT

Content-Length: 177

Content‑Type: text/html

<HTML>

 <HEAD>

    <TITLE>This is my home page</TITLE>

 </HEAD>

<BODY>

 <H1>this is my jolly little home page</H1>

 <P>You can read this if you like.</P>

</BODY></HTML>

The code 200 after HTTP indicates that the request was successful, and that the reply follows.  As soon as the reply data has all been sent, the server closes the connection, and that’s the end of the transaction.  In this mode, there is no possibility of continuing to interact with the server: if you want to get a second file, such as an image, you must make a separate HTTP connection.  HTTP 1.1 does in fact support a keepalive mechanism whereby a single connection can be used for multiple requests, but this is not widely used.

The sequence is as follows:

1. Client connects to web server

2. Client issues HTTP request (usually GET or POST)

3. Client issues HTTP headers (at least Accept, and usually others)

4. Server issues response

5. Server sends data

6. Server disconnects.

The data is normally sent with CR LF line endings, and the Content-Length header in the reply reflects this.

MIME Types

The example HTTP response above included the following line to indicate that the result was a file in the HTML format.

Content-Type: text/html

The Multipurpose Internet Mail Extension specification (MIME) specifies how these work; the registry of MIME content types includes text/html, text/xml, text/plain, image/jpeg and many others.

In a Macintosh environment, each file is marked with the signature of the application that created it. On a Microsoft Windows system, file types are determined by looking up the last few characters (after a dot) of the filename in the Windows Registry. On Unix systems, generally either the first few bytes are examined or the file suffix is used.

On the Internet, when you are fetching a remote document, it’s important that whoever maintains the file can change its format. As a result, World Wide Web clients determine the format of data not by the filename, which they don’t even have access to usually, but by the Content-Type header. The client then looks up the Content Type in a table to see how to process the data. You can see such a table by looking in Netscape’s Applications preference box, or by looking for a mime.types file on a Unix system.

If you have worked through this chapter from the start, it should be clear that a web client can be either synchronous or asynchronous, depending on its other needs. A Web Server will always be asynchronous, in order to deal with multiple incoming connections. The perl example in the previous section could be extended to make a web server, and this is a useful exercise,. There are many easy to use web server modules available for download from CPAN and elsewhere; see the Resources section at the end of this Part of the book. The architecture shown in the perl example is the most efficient for a single-processor Unix system handling many small requests. For other architectures, see the Further Reading section at the end of this chapter.

If you are working in a multi-threaded environment such as Java, or have multiple processors, you may prefer to use a separate thread to handle each connection. This simplifies the programming, although if you only have one processor, the overhead of switching threads will generally make the result less efficient. For most applications, efficiency is unlikely to be a major issue.

[TODO (maybe) a sample web server in Java, less than a page]

URLs and Gateways

It seems safe to assume that most people have seen a Uniform Resource Locator by now. In case you haven’t (!), here is an example:

http://www.valinor.sorcery.net:81/search/glossary?term=irl

This URL contains five parts:

1. The name of protocol, http;

2. The server to which to connect, www.valinor.sorcery.net;

3. The network port to which to connect, 81;

4. The path to fetch, /search/glossary;

5. An argument, term=irl.

In fact, /search is a program, so that there is no /search/glossary file on the server. Instead, the Web Server passes /glossary as a parameter to the search program, along with the argument term=irl. The search program is acting as a gateway to a database, and the web server uses the Common Gateway Interface (CGI) to communicate with the search program.

You might sometimes hear people mention “CGI Scripts” thinking that CGI is a programming language. In fact, although most CGI programs seem to be Unix shell or perl scripts, a CGI program can be written in any language, including (for example) a complete C++ database client.

For more details on CGI, see the Further Reading section, particularly Ian S. Graham’s book on HTML. An appendix to this book gives a summary of CGI.

From the point of view of the XML database programmer, the important thing to know is that you have the flexibility to write a standalone program that can be called by a web server, or a daemon that stays running and works like a simplified Web Server itself, responding to requests, or even a module loaded into an existing web server.

Web 401 Authentication

A World Wide Web client will usually make a whole new connection to the web server for each separate object to be fetched. This is very simple, but it means that there is no good way to track a user’s session. Most databases use the model that you first log in, then do a number of operations, then log out. Clearly this is incompatible, since logging in would be one web transaction, and then you’d be disconnected again!

In order to support some kind of login, the Web supports a response called 401 Authentication.

The client connects and requests a URL as normal, but the server replies with 401 instead of the normal 201 (OK). The client disconnects from the web server, prompts the user for a password, and, if the user gives one, tries again, this time supplying the password (lightly encrypted). If the password is correct, the web server responds with 201 as if nothing had ever happened. Each time the client requests a URL with the same prefix as the first in which the password was requested, it sends the password to the server.

For example, suppose http://www.valinor.sorcery.net/admin/index.html is password protected.

An attempt to fetch this URL results in a 401 Authentication Required reply.

If the client supplies a good username and password, however, the fetch succeeds.

If the client then attempts to fetch http://www.valinor.sorcery.net/admin/opertalk/, it will see that this URL begins with the same http://www.valinor.sorcery.net/admin/ prefix and automatically supply the username and password, to save time.

The username and password combination is not retained between browser sessions.

Web Cookies

A cookie is a piece of data stored locally by a web client. The idea is that a web server can send a small piece of data (up to 4,000 bytes in most implementations) to the client, which will store it. The next time the client connects to that URL, or to that prefix (as in 404 Authentication), the client sends the cookie back to the server along with the HTTP request.

People running web sites can use cookies to keep track of user preferences, or to manage login sessions that span long periods. Unfortunately, perhaps because of a piece of poorly understood journalism in 1984, many people feel that cookies are an invasion of privacy and disable them, or even purchase software that automatically deletes cookies.  As a result, cookies should not generally be used on the Web, although they are fine in a corporate intranet where one might be able to control the clients and setting that people can use.

Summary of World Wide Web Networking Architecture

The World Wide Web Architecture uses web server processes to supply data to remote clients.

The combination of MIME headers and database gateways means that a single client can acces many types of information.

Web clients can use synchronous or asynchronous networking, but a web server is almost always asynchronous.

Exercises

1. Download and compile the SIP client and server program.  Modify the client to remain connected, asking about the part number supplied once every 5 seconds.

2. Add a SIP_SHIP message to the low-level protocol that tells the server to deduct a given number of items of the specified part number.  You may find it helpful to stop the server from changing quantities in stock itself!  Make a sipship client program that uses this, and experiment with running multiple copies of the sipclient at the same time as running sipship.

This exercise should help you get a solid idea for exactly what's going on inside the client and server protocols.

3. Make an asynchronous version of the client; a good way to test it would be to make a graphical user interface and make sure that the program still responded whil waiting for a reply.  Add a 10 second delay in the server to test this.

4. Investigate another client-server protocol, such as IRC (Internet Relay Chat) or FTP (the File Transfer Protocol); there are references for these in the Further Reading section below. Yuo might like to download the irc++ example code and try it.

5. Read the IETF specification for HTTP (the HyperText Transfer Protocol) used by web browsers. Write a perl script that connects to a web server and downloads an HTML document to a file.

6. Write a simple web server in a language of your choice. Support GET to fetch files from a specific directory, and then add either CGI or Java Servlet support. Can users access files they shouldn’t using your server? How would you test the performance and security of the server?

Further Reading

Perl cookbook

ftp spec

http spec

Richard Stevens book

Wiley client/server book (Chang & Harkey)

Ian’s HTML book

Apache documentation

Java in a nutshell

