Chapter 5

Reading XML in a Program

This chapter describes how to incorporate the ability to read XML into a program, whether that program is written in C, C++, Java, Perl, python or some other language. We start by showing simple ways to manipulate XML in a program (the Desperate Perl Hacker’s toolkit, if you will). We next move on to various low-level ways to read XML by interfacing with a parser, either external or internal, and then finally arrive at the World Wide Web Consortium’s Document Object Model, the DOM. Since there are already more books on using the DOM than you can shake a stick at, and since the open source community often wants small programs that work together rather than large ones that don’t, this book does not dwell for long on the DOM. See the Further Reading section at the end of this Chapter for other books and references about the DOM (and on all of these topics).

Our XML example for this chapter is a description of science fiction books. We will return to this example in Part Two of the book, but our focus here will be on the information as a document rather than a database. It is instructive to consider the differences that result from these two worldviews, the document vs. the database. These differences will emerge gradually over the course of this chapter, and will be revisited in Part Two later. [@@Note: I wanted an example that would be interesting in the "open source programmer community" and also relevant and useful for other people! I am considering a web site that will hold a massively expanded version of this database -- Liam @@]

XML Example: Book Catalogue

For our example, we will represent the author’s science fiction and fantasy book collection as a catalogue. The programs we develop in this chapter would let us put this catalogue up on the web, or make automated changes to it, or read it in software. The example was chosen because aspects of it are applicable to all the major topics covered in this book: documents, databases, information retrieval and metadata.

The catalogue will, at least for now, be held in a single XML file. This isn’t a good long term choice, as we’ll see when we talk about storing XML in a repository in Part 3, but it is a good start.

A first attempt to represent a book might be as follows:

<book>

 <title>The Celestial Steam Locomotive</title>

 <author>Michal Greatrix Coney</author>

 <publisher>Futura</publisher>

 <city>London, UK</city>

 <pages>302</pages>

 <date>1983</daet>

</book>

There are some problems with this. The first is that I have a number of books by Michael Coney (many of them with equally strange titles), and if I have to retype the author’s name for each of them, I shall almost certainly make mistakes. Then I won’t be able to find all books by Michael Coney, because the name will be wrong in some of them. If you’re saying, so proof-read more carefully!, consider that once I’ve put this up on the web, I might want to allow other people to search or update entries, and I’ll quickly have what database people call an integrity problem. What if I end up with three entries for the same book, all with slightly different spellings? The same holds for the Publisher, of course.

Another problem is that it doesn’t represent multiple editions very well. I’m going to ignore that problem for this book, at least until we get to the chapter on metadata, because it raises lots of issues that aren’t germane to reading XML in a program, although they are certainly important. We’ll use the copyright date for the earliest publication of each book.

We might also want to store some other information, such as pictures of the cover, extracts, reviews or even the blurb on the back of the book’s cover. Here is a richer DTD that will let us represent the catalogue more carefully. It still isn’t up to use by a real library, by the way; see the reworked example in Part 5 of this book for ideas on how to extend this to a MARC-style card catalogue.

Finally, it's very difficult to know how to sort a name like Michael Greatrix Coney; does it go under M, G or C? We should mark the Last Name and the First Names separately, or use an explicit sort key.

Let’s start off by defining separate sections for authors, publishers and actual titles:

<!ELEMENT Catalogue
 (AuthorList, PublisherList, BookList)

>

<!ELEMENT AuthorList
 (Author*)

>

<!ELEMENT PublisherList
 (Publisher*)

>

<!ELEMENT BookList
 (Book*)

>

The use of * in the various lists means that we can start editing without any books; for the production DTD we’ll use a + instead of a *.

We will use the XML ID/IDREF linking facility to represent the relationship between a book and its authors and publisher. We will also allow multiple authors, and admit the possibility of editors as well as authors. A book in our simplistic model has only a single date and publisher, so these are attributes.

<!ELEMENT Book
 (Title, AuthorRef*, Blurb?)

>

<!ATTLIST Book
 EarliestDate NUMBER #IMPLIED

 Publisher IDREF #IMPLIED

 id ID #REQUIRED

>

<!ELEMENT Title
 (%RunningText;*)

>

<!ELEMENT AuthorRef
 EMPTY

>

<!ATTLIST AuthorRef
 Rôle (Wrote|Edited) "Wrote"

 Who IDREF #REQUIRED

>

We could have used an IDREFS attribute on the Book element instead of separate sub-elements, but that would make it difficult to say whether the person referenced wrote the book or edited it. With one more book added, our book now looks like this:

<Catalogue>

 <AuthorList>

 <Author id="a001">

 <LastName>Benford</LastName>

 <FirstNames>Gregory</FirstNames>

 </Author>

 <Author id="a002">

 <LastName>Coney</LastName>

 <FirstNames>Michael Greatrix</FirstNames>

 </Author>

 <Author id="a003">

 <LastName>Brin</LastName>

 <FirstNames>David</FirstNames>

 </Author>

 </AuthorList>

 <PublisherList>

 <Publisher id="p001">

 <Name>Bantam</Name>

 <Country>USA</Country>

 </Publisher>

 <Publisher id="p002">

 <Name>Futura</Name>

 <Country>UK</Country>

 </Publisher>

 </PublisherList>

 <BookList>

 <Book id="b001" EarliestDate="1983" Publisher="p002">

 <Title>The Celestial Steam Locomotive</Title>

 <AuthorRef Rôle="Wrote" Who="a002" />

 <Blurb>Alan-Blue-Cloud is pure intelligence, immortal,

 ineffable, a being who remembers not only what

 was, but what will be. This is his story, set in the

 year 143,624 Cyclic, in a future so distant that . . .

 </Blurb>

 </Book>

 <Book id="b002" EarliestDate="1986" Publisher="p001">

 <Title>Heart of the Comet</Title>

 <AuthorRef Rôle="Edited" Who="a001" />

 <AuthorRef Rôle="Wrote" Who="a003" />

 </Book>

 <Book id="b003" EarliestDate="1998" Publisher="p001">

 <Title>Heaven's Reach</Title>

 <AuthorRef Rôle="Wrote" Who="a003" />

 <Notes>The final book of the second Uplift trilogy</Notes>

 </Book>

 </BookList>

</Catalogue>

Historical Aside: The Desperate Perl Hacker

[@@ this could be a sidebar -- Liam @@]

During the development of XML, John Bosak wanted to describe a technical writer who was given a task such as, replace part number 1996 by part 1996B without affecting dates, in all 150,000 pages of documentation. The writer would know some Perl but not be a programmer, and the deadline would be, by the end of the afternoon.

The person thus described was desperate to get the job done, was a hacker in the sense of someone writing "quick-and-dirty" code to get a job done, and used Perl because it's the most commonly used language for jobs like this.

A lot of issues were decided in the design of XML based on how hard they would be for the Desperate Perl Hacker, and it should come as no surprise that Perl and XML go very well together. [@@ End of sidebar, or leave it as a sub-section here, either is fine by me -- Liam @@]

[@@ Sidebar 2: regular expressions @@]

Aside on Regular Expressions

If you are not familiar with regular expressions or if you think the very name sounds complicated, it's time to take another look.

Relational databases are very weak when it comes to string manipulation, particularly when compared to the strong heritage of text processing tools that grew up around the Unix Operating System.

A regular expression is simply a pattern. For example, a regular expression that matches "ba!", "baa!", "baaaa!" and so on, might be written as "ba+!". The plus sign (+) means that the pattern matches one ore more of whatever is before it: an "a" in this case.

The Resource Guide at the back of the book gives more detail on regular expressions, and lists some of the many tools that can use them. Often, a few minutes of careful thought constructing a search and replace in an editor (even Microsoft Word has regular expressions!) can save hours of painstaking handwork. In a program, regular expressions can increase the flexibility and robustness of your code as well as saving a lot of code complexity.

Here are some more examples. [@@this could also be formatted as a glossary @@]

^b
Matches a string starting with "b"; the ^ anchors the pattern to the start of the string it's trying to match.

t$
Matches a string ending in "t". The $ anchors the pattern to the end of the string it's trying to match.

^pattern$
This pattern is anchored at both ends, so it only matches the word pattern! It's not a very useful example, but when you use a more complicated pattern between the ^ and $, it's invaluable.

b[aeiou]y
a character class in square brackets matches any of the characters listed in it: this example matches bay, bey, biy, boy or buy.

[^aeiouy][aeiouy][^aeiouy]
The ^ at the start of a character class means to match anything except the characters listed inside it. This example matches a three-letter word that starts and ends with a consonant and contains a single vowel: boy, tub, cot, dig, lip, and so forth.

[a-d][a-m][a-m]
A "-" inside a character class represents a range, so that [a-d] is the same as [abcd]; this is just a convenient shorthand. This example matches bag but not bay, because y comes after m, the end of the range allowed for the third character.

ba*
The * means zero or more of whatever was immediately before it, so this example matches "b" (with no "a" at all), "ba", "baa", and even "baaaaaaaaaaaaa".

ba+
The + means one or more. Not all tools support +, because you can always make ba+ by writing baa* instead. This example matches "ba", "baa", "baaa" and so on, but not just "b".

ba?
The "?" means optional: this example matches "b" and "ba".

A substitution replaces whatever was matched by a regular expression with something else. For example, to change every grey or gray to yellow, one might use the sed or vi syntax

s/gr[ae]y/yellow/

where s means to substitute.

This command, in vi, sed or perl, might change

The grays of the dawn were like a green grayhound

into

The yellows of the dawn were like a green grayhound

The alert reader notices that the second match on the line wasn't changed.

Let's try again:

s/gr[ae]y/yellow/g

The yellows of the dawn were like a green yellowhound

You will also see some examples that use parentheses, either for grouping or in a substitution. These (unfortunately) work differently in different programs; the Resource Guide at the back of the book gives some pointers.

In the Unix sed, vi, grep and perl commands, the idiom \(...\) is used to bring something into the replacement part of a substitution:

s/\(barefoot\) \([^]*\)/\2: \1/

turns

barefoot jim

booted Susan

barefoot Martin and Eve

into

jim: barefoot

booted Susan

Martin and Eve: barefoot

[@@End of sidebar 2, regular expressions @@]

Reading the Example in Perl

The easiest way to read this example might actually be to start at the end. Consider the last book in the example, Heaven's Reach. The AuthorRef tells us that author a003 wrote the book (wrote because Rôle is wrote). If we look up in the AuthorList section, we see that author a003 is David Brin. Similarly, publisher p001 published the first edition of this book, and we can look up to the PublisherList section to see that this is Bantam, in the United States. I have also noted that Heaven's Reach is the last book in David Brin's second Uplift trilogy. This data is more or less normalised: there's no repetition of data, although the model of publishers is oversimplified and I should probably represent the idea of trilogies a little more carefully. It's enough for now, though, since our real goal is to read this into a program, not to write a book catalogue!

Unfortunately, there is an error in the sample: Heart of the Comet was co-authored by Gregory Benford and David Brin; Gregory Benford is listed incorrectly as an editor. Let's see how to fix that in Perl first, with a simple text substitution.

if (m@<AuthorRef Rôle="Edited" Who="a001" />@) {

 s@Edited@Wrote@;

}

There, that wasn't so bad!

Unfortunately, if Gregory Benford had edited any other books, this Perl fragment would change those too. Let's fix that, then discuss when to use a simple Perl script like this before moving on to more XML-specific tools.

#! /usr/bin/perl -w

perl script to change the rôle of an author $1 to $2 in

the books whose Ids are $3, $4, etc

if ($#ARGV < 2) {

 die "usage: $0 author-id new-rôle book-id [book-id...]"

}

my ($author_id,$new_role) = ($1, $2);

remember which books we have to change in an array:

my %books;

{

 my $i;

 for ($i = 2; $i <= $#ARGV; $i++) {

 $books{$ARGV[$i]} = 1;

 }

}

perl hackers might use this slice instead:

%books{@ARGV[2 .. $#ARGV]} = @ARGV[2 .. $#ARGV];

my $changeThisBook = 0;

while (<>) { # for each line of input

 # see if we found a book and want to change it:

 if (/<Book [^<>]*id=['"]([^'"]+)"/) {

 $changeThisBook = $books{$1}; # true if we want to change it

 }

 # if we see the author, and we're changing things...

 if ($changeThisBook && /<AuthorRef [^<>]*Who="${author_id}"/) {

 s/Rôle="[^"]*"/Rôle="${new_role}/;

 }

 # print the (possibly changed) line:

 print;

}

This Perl example will do the job: put it in a file called newrole.pl, and run it with

newrole.pl a003 Wrote b001 b003

to do the change.

If you're used to working with relational databases, you are probably thinking that this is utterly insane compared with

 UPDATE Wrote_tbl

 SET Role = "Wrote"

 WHERE Book_id = "b001" AND Author_id = "a003"

 ;

You're right, it is. But what if we change the question to, I seem to have written Teh instead of The a lot, and it's never right in a book title, can you change them all for me? Now, we have something we can't easily do at all in SQL, because although we can use LIKE to match Teh and teh and TEH and maybe even tEh, we can't directly change the value in SQL. With Perl, it's very easy:

if (/<Title>/ .. /<\/Title>/) {

 s/teh/the/ig;

}

The trailing i tells perl that the substitution is case insensitive, so that it will match all of the possible variations, and the g means that the substitution should be performed throughout the entire input line, not just on the first match found.

Discussion: Desperate or Dirty?

The Perl fragments shown so far all have one serious failing: they do not check that the XML they are given is well-formed. This means that if they are given malformed input, they'll merrily pass it along as malformed output. The scripts also assume that separate Book elements will be on separate lines, although that's fairly easy to fix using Perl's slurp mode.

These fragments are perfect for when you need to make a quick change, but they are probably not suitable for production code. That doesn't mean that you can't use Perl in a production system, but rather that production code has to be robust against errors.

The fact that these scripts are even possible is due to careful design on the part of the XML Working Group, and is not just a happy co-incidence, so there is certainly no need to be ashamed of them! Let's look at the XML design features that help Perl programmers.

EMPTY elements are distinguished

In SGML, from which XML was derived, an EMPTY element such as AuthorRef has a normal start tag and no end tag. Consider this SGML example:

<Book>

 <Title>Heart of the Comet</Title>

 <AuthorRef>

You have no way to know whether there will be an end tag for AuthorRef or if it's EMPTY, except by fetching and parsing the DTD. In XML, though, the tag is written with a /> instead, thus: <AuthorRef/> . This was done so that text-processing tools would not need to look at the DTD to handle EMPTY elements.

Attributes cannot contain markup characters

An attribute value is not allowed to contain < or >, so that the regular expression <[^>]+> will always match a tag. Without this rule, a start tag like <expr value="a > 4 and b < 12"> would be possible; the regular expression would only match <expr value="a >, and that would be sad.

NOTE: If you need to put a less-than or greater-than sign into an attribute value, use < or > as appropriate.

Tags cannot be omitted

In HTML, and in many other SGML applications, it's possible to leave out tags if a sufficiently intelligent parser can determine exactly what you omitted. This is called the OMITTAG feature of SGML, and XML doesn't have it.

Consider the following HTML example:

<table>

 <tr>

 <td><p>This is a table cell.

 <p>It contains two paragraphs

 </td>

</table>

In XML, it must be written like this (the extra markup is in bold):

<table>

 <tr>

 <td><p>This is a table cell.</p>
 <p>It contains two paragraphs</p>
 </td>

 </tr>

</table>

Not so dirty

There are many other similar ways in which XML has been made amenable to Perl or other text-based languages, but these are the essential ones to understand; the others are only important if you are working with SGML as well as XML.

We shall see later in this chapter that it's possible to use Perl together with XML well-formedness checking, and even validation, but you can do a lot with simple scripts like this, given well-formed XML input.

External Parsing and the ESIS

One approach to reading XML is to have an external program read it and convert it into a regular form that is easy to handle. Since XML, unlike unrestricted SGML, is already very regular, this approach is used less often than it used to be, but it is still often worth considering.

What is ESIS?

ESIS stands for the Element Structure Information Set, and was defined in ISO 13673, Reference Application for SGML Testing, so that the output of two SGML parsers could be compared.

In practice, when most people say ESIS, they mean the output of James Clark's freely available nsgmls tool, which also conforms to the ISO 13673 standard. The format is documented (at the time of writing) at http://www.jclark.com/sp/sgmlsout.htm; the table gives a sumary, and after that is a sample ESIS file produced by running (under Linux)

$ nsgmls xml.dcl bokcatalogue.xml > esis.txt

where xml.dcl is found in the /pubtext directory of the SP 1.3 (or later) distribution from http://www.jclark.com.

Below is an example ESIS for the book catalogue document above. You can see that the first character on each line describes the line:

Character
Meaning

(name
Start of element called name; if the element had attributes, they are on A-lines before this one.

Aname type [value]
The element about to start will have an attribute called name of the given type, with the given value (if present). The type is one of IMPLIED (in which case there is no value), CDATA, NOTATION, ENTITY, TOKEN or ID.

)name
End of element called name.

-text
Textual content of an element; there can be more than one of these lines for a single element.

?procinst
A processing instruction or XML declaration

e
The next element to start was declared as EMPTY, and would therefore have a tag like <name atts../> with the /> at the end. You only get this if you run nsgmls with the -oempty option.

C
This is the last output line, and is issued only if the document was valid.

There are other possible codes, but those are the most important; consult the documentation mentioned above if you need the full set. You will also see some escape sequences within the text:

\n
This represents a newline character in the input, ASCII LF (10 in decimal , 012 octal or 0A in hex, also control-J). You will normally see only where #PCDATA was allowed in the DTD.

\ddd

\#nnnnnn;
Represents the input data character whose character code is ddd in octal. For example, an A might be represented as \101 because it's 65 in decimal, 101 in Octal. The alternate decimal form \#65; is used for Unicode characters whose codes are too large to be represented by three octal digits.

\\
Represents a literal \ that was found in the input.

Here is the ESIS output from the book catalogue sample earlier in the chapter:

?xml version="1.0" encoding="iso8859-1"

(Catalogue

(AuthorList

Aid TOKEN a001

(Author

(LastName

-Benford

)LastName

(FirstNames

-Gregory

)FirstNames

)Author

Aid TOKEN a002

(Author

(LastName

-Coney

)LastName

(FirstNames

-Michael Greatrix

)FirstNames

)Author

Aid TOKEN a003

(Author

(LastName

-Brin

)LastName

(FirstNames

-David

)FirstNames

)Author

)AuthorList

(PublisherList

Aid TOKEN p001

(Publisher

(Name

-Bantam

)Name

(Country

-USA

)Country

)Publisher

Aid TOKEN p002

(Publisher

(Name

-Futura

)Name

(Country

-UK

)Country

)Publisher

)PublisherList

(BookList

AEarliestDate TOKEN 1983

APublisher TOKEN p002

(Book

(Title

-The Celestial Steam Locomotive

)Title

ARole TOKEN Wrote

AWho TOKEN a002

(AuthorRef

)AuthorRef

(Blurb

-Alan-Blue-Cloud is pure intelligence, immortal,\n\012 ineffable, a being who remembers not only what\n\012 was, but what will be. This is his story, set in the\n\012 year 143,624 Cyclic, in a future so distant that . . .\n\012

)Blurb

)Book

AEarliestDate TOKEN 1986

APublisher TOKEN p001

(Book

(Title

-Heart of the Comet

)Title

ARole TOKEN Wrote

AWho TOKEN a001

(AuthorRef

)AuthorRef

ARole TOKEN Wrote

AWho TOKEN a003

(AuthorRef

)AuthorRef

)Book

AEarliestDate TOKEN 1998

APublisher TOKEN p001

(Book

(Title

-Heaven's Reach

)Title

ARole TOKEN Wrote

AWho TOKEN a003

(AuthorRef

)AuthorRef

(Notes

-The final book of the second Uplift trilogy

)Notes

)Book

)BookList

)Catalogue

C

The trailing C at the end shows us that the document is Conforming to its DTD -- that is, that it's valid. In this case, nsgmls also returns to the Unix shell an exit code of zero, meaning success. This means that you can write a test in a shell script:

/bin/sh

esis -- generate ESIS from an XML file,

just a wrapper to show how to incorporate

nsgmls into a shell script

Liam Quin, Barefoot Computing, 1999

This shell fragment is public domain.

input="$1"

if test ! -f "$input"

then

 echo "usage: esis file.xml" 2>&2

 exit 1 # fail

fi

decl="/usr/local/pubtext/xml.dcl"

esis=/tmp/xx.$$

arrange for the temporary file to be removed on exit:

trap '/bin/rm -f $esis; exit' 0 1 2 3 15

if nsgmls -oempty $decl $input > $esis

then

 # process valid output in $esis in some way:

 /bin/ls -l "$esis"

else

 echo "$input is not valid" 1>&2 # error messaage

 exit 1

fi

Reading ESIS

If you have used awk or perl, you can probably see how to make use of this format at once. Even in C it's pretty easy. I am not going to show you much sample code, because a better approach is to use a higher level library that reads the ESIS and returns events to your program. When you can, it's usually better still to incorporate an XML processor directly into your program, and we'll see in the next section below that this is pretty easy. When you can't recompile the code you're working with (for example), reading ESIS is often a fairly painless option. If you use C or C++, remember that there is no fixed line length limit, and no maximum length for an XML element name, so you'll need to use malloc() for all the strings you see, not fixed size arrays.

David Megginson's NSGMLS.pm

This oddly named piece of software, also called SGMLS.pl, is a Perl library that reads ESIS and returns a sequence of events. You provide Perl functions to handle element starts, ends, and other events, and the library builds up all the attributes into a hash table and calls your code as appropriate. This is pretty neat, and it's mentioned here because it reads ESIS, and sometimes it's your best option. The Simple XML API, SAX, described next, is much more likely to be what you're looking for, though., and it's written by David Megginson too, so you don't need to feel disloyal. More importantly, there are open source SAX modules for Perl, Java, C, Python, C++, and maybe even Intercal at this point.

Why keep nsgmls?

James Clark's nsgmls tool can produce an ESIS form of an XML (or SGML) document, but it can also check a document's validity and warn about errors. This turns out to be terribly useful, and since nsgmls is very fast, it's pretty handy to have around. There are versions for Linux, Solaris (Intel and SPARC), Windows, Free BSD and other operating systems readily available. See the Resource Guide at the end of the book for details.

Using an Internal Parser: expat

Using an external parser can involve the fewest source changes, particularly on Unix where running an external process is fast and easy. If you need better performance, or control over error messages, you will need to compile a parser into your application directly.

We will talk about reading XML in C and in Perl; we will then briefly mention Java and Python. This is because it's hardest in C and most common in Perl, and there are more books on using XML in Java than you can shake a stick at, so you've probably read them.

The parser we will use for both C and Perl is expat, again from James Clark (http://www.jclark.com/). There are a number of other parsers available, and some of these are listed in the Resource Guide at the end of the book. We will start by using expat directly, with James' C interface. We will then look at SAX, with a short Java example, and at The Perl XML::SAX module. After that, we'll have a quick cheese and tomato sandwich, and then, suitably nourished, take a short look at the Document Object Model.

You are encouraged to try the examples; again, the purpose of this chapter is to give you an understanding of the strengths and weaknesses of the various approaches to reading XML. The reference documentation is either included in the Resource Guide at the back of the book or, in some cases, is on a web site that's referred to in that section.

The expat API

This section is intended to give you enough documentation to get started, together with an example. The Resource Guide at the back of the book gives pointers to more complete documentation. This section is being included in this book partly because there aren't (at the time of writing) any other books that discuss it usefully, but mostly because expat is the easiest way to integrate XML into an existing C or C++ program. There are also Perl and Python interfaces to expat. If you are using Java, you should look at SAX instead, in the next section.

Note: much of the material describing expat comes from comments in James Clark's C code, or from the Perl documentation from the modules that Larry Wall and Clark Cooper wrote.

The expat parser defines a set of callbacks and some functions for you to call. The general model is this:

1. You create a parser object with XML_ParserCreate();

2. Your program registers callbacks with XML_SetElementHandler(), XML_SetCharacterHandler() and so on for each sort of thing you're interested in (element start, text, element end, processing instruction); the functions to do this are described under expat functions below.

3. You hand the data to XML_Parse() as it becomes available;

4. You destroy the parser object with XML_ParserFree().

The following sections describe the API in more detail. After that, you'll find some notes on compiling expat under the Unix operating system, since expat comes set up for a Windows build.

Using expat in Perl

Larry Wall and Clark Cooper have provided a Perl interface to expat, XML::Expat. There is a higher level interface called XML::Parser. The Perl documentation for these modules is included in the Perl section of the Resources Guide at the end of the book, along with references to online resources for using XML in Perl

. There is a brief Perl example following the sample C program below, using the higher-level XML::Parser module.

Using expat in Java

You probably shouldn't do this. Look at the section on SAX below instead.

If you have made measurements and really need the performance, it is possible, using native methods; see the archives of the xml-dev mailing list to get started. Make sure you've used Java profiling tools and are really certain that more than 10% of the runtime your program is spent in the XML parsing code directly, not in calling your own methods to handle things found in the XML. Even then, you may do better to consider using a cache of recently parsed documents, or perhaps storing the XML in an object-oriented database as described in part III of this book. Always try to avoid using native methods for as long as possible. They are difficult to debug, they make it harder to use profiling tools and almost impossible for your code to work on multiple platforms.

Expat Functions in C

This section describes the functions that the expat API exports.

Creating a Parser

Create a new parser with XML_ParserCreate:

XML_Parser

XML_ParserCreate(

 const XML_Char *encoding

);

This creates a new parser object and returns a handle to it. You should keep the handle, as you'll need it for future calls.

The encoding parameter is a string, which, at the time of writing, should be one of the following:

(NULL)
A NULL pointer passed as an encoding tells expat to use the encoding given in the XML declaration in the input document. If that declaration is unknown, the Unknown Encoding Handler will be called.

ISO-8859-1
Also known as Latin 1, this is the encoding most widely used for HTML documents, and is also the default character encoding on the X Window System in most Western countries.

US-ASCII
This is a 7-bit encoding (the 8th, top, bit in each byte must always be zero), and since it's essentially a subset of ISO-8859-1 without the accented characters, you probably don't want to use it.

UTF-8
This is the most common encoding for using Unicode in Western countries.

UTF-16
This is an alternative encoding of Unicode which is much more efficient for Kanji and other non-western character sets, but which is not so useful if you are mostly dealing with English, or other Latin-alphabet languages, since it uses two bytes for each character.

Encodings

Suppose that you supply a different encoding parameter, or you supply a NULL pointer and the document contains an XML declaration with a different encoding, like this:

<?xml version="1.0" encoding="iso8859-1"?>

Here, the encoding is not an exact match for any in the above list. If you have called XML_SetUnknownEncodingHandler(), the function you gave as an argument to it will now be called with two parameters, the encoding string "iso8859-1" and a structure that your function must fill in.

typedef int(* XML_UnknownEncodingHandler)(

 void *encodingHandlerData,

 const XML_Char *name,

 XML_Encoding *theEncoding

);

void

XML_SetUnknownEncodingHandler(

 XML_Parser parser,

 XML_UnknownEncodingHandler handler,

 void *data

);

In the case of our example, expat already knows how to handle the encoding, but has a different name for it. We can handle that easily by filling in the XML_Encoding structure that is passed to our callback function, and returning 1:

typedef struct {

 int map[256];

 void *data;

 int (*convert)(void *data, const char *s);

 void (*release)(void *data);

} XML_Encoding;

static int

handleMisspeltEncoding(

 void *encodingHandlerData,

 const XML_Char *encodingName,

 XML_Encoding *result
)

{

 /* always use the current C locale setting; this
 * may be wrong, so you should write code to check that
 * encodingName looks like iso8859-1 or Latin1 first.

 */

 int i;

 for (i = 0; i < 256; i++) {

 result->map[i] = i;

 }

 /* We won't set the handler functions for the encoding,
 * because this is a one-byte encoding. If you need to handle
 * multibyte encodings other than UTF16, for example
 * ISO2022 escape sequences, you'll need to fill in the other
 * components of the structure.
 */

 return 1;

}

Installing Callbacks

Once you have created an XML_Parser object, you probably want to arrange to see the data. You supply a number of functions, of which the most important are handlers for when an element starts, when an element ends, and when character data is seen:

typedef void (* XML_StartElementHandler)(

 void *userData,

 const XML_Char *name,

 const XML_Char **atts

);

typedef void (* XML_EndElementHandler)(

 void *userData,

 const XML_Char *name

);

void

XML_SetElementHandler(

 XML_Parser p,

 XML_StartElementHandler start,

 XML_EndElementHandler end

);

typedef void (* XML_CharacterDataHandler)(

 void *userData,

 const XML_Char *s,

 int len

);

void

XML_SetCharacterDataHandler(

 XML_Parser p,

 XML_CharacterDataHandler handler

);

The example code later in this chapter uses these callbacks.

Note that where a dataLength parameter is supplied, the given string is not nul-terminated. This means that you can't use functions like strcmp(), strcpy() or strdup() on it: you must use strncmp(), strncpy(), and malloc() instead. If you are using Unicode data, you may have to consult the Unicode specification at http://www.unicode.org/ for information on how to compare strings, unless you have a library to do it for you.

Other XML features for which you can set include CDATA sections, comments, external entity references, name spaces, notation declarations, processing instructions, unparsed entities (i.e. non-XML objects such as images), and the XML standalone declaration.

Other functions

There are a number of other expat functions whose names all start with XML_. You should probably avoid declaring any global (non-static) functions or variables whose names start with XML_, so as to avoid confusion and frustrating bugs.

Installing and building expat

The Resource Guide includes notes on how to build expat on Unix. It's not difficult, but if you are not used to software development on Unix, the lack of a Makefile makes it harder than it might be, at least at the time of writing.

A Sample expat Program

Here is our sample program. It builds a linked list of Authors by reading from bookcatalogue.xml, and, at the end, prints them all out.

/* authors.c
 *

 * Liam Quin, Barefoot Computing, 1999

 *

 * This source code is in the public domain.

 *

 * Authors -- read an XML book catalogue and fill in a data

 * structure for them.

 *

 */

#include <stdio.h>

#include <string.h>

#include "xmlparse.h"

typedef struct s_Author {

 struct s_Author *Next;

 char *id;

 char *LastName;

 char *FirstNames;

} t_Author;

typedef struct {

 t_Author *Authors;

 /* hold the list so far */

 t_Author *Current;

 /* pointer to the author element we're updating right now */

 int Saving;

 /* non-zero if we are inside an Author element */

 char **SavePointer;

 /* where to put text we save */

} t_State;

static void

startElement(

 void *userData,

 const char *name,

 const char **atts
)

{

 t_State *State = userData;

 if (strcmp(name, "Author") == 0) {

 /** A new Author element, so make a new structure
 ** to hold it, and start to fill it in
 **/

 t_Author *neo =

 (t_Author *) malloc(sizeof(t_Author));

 if (!neo) {

 /** out of memory;
 ** handle this better in real code
 **/

 fprintf(stderr, "author: out of memory, sorry\n");

 exit(1);

 }

 neo->Next = 0;

 neo->id = neo->LastName = neo->FirstNames = 0;

 if (State->Current) {

 State->Current->Next = neo; /* bug: see Exercises */

 }

 State->Current = neo;

 if (!State->Authors) {

 State->Authors = neo;

 }

 State->Saving = 1;

 State->SavePointer = 0;

 /** Save the ID attribute, if set
 ** Attributes are supplied in an array, with alternate
 ** values being the attribute name, then the value
 **/

 if (atts && atts[0]) {

 char *AttName, *AttValue;

 int n;

 for (n = 0; atts[n]; n += 2) {

 if (strcmp(atts[n], "id") == 0) {

 State->Current->id = strdup(atts[n + 1]);

 } else {

 fprintf(stderr, "unexpected attribute %s\n", atts[n]);

 /* see Exercises for ideas about this one */

 exit(1);

 }

 }

 }

 return;

 }

 if (!State->Saving) {

 return;

 }

 /* arrange to save text if it's wanted:

 * we do that by setting SavePOinter to point to the field we

 * want to fill in

 */

 if (strcmp(name, "LastName") == 0) {

 State->SavePointer = &State->Current->LastName;

 } else if (strcmp(name, "FirstNames") == 0) {

 State->SavePointer = &State->Current->FirstNames;

 } else {

 fprintf(stderr, "element %s found inside Author! Urk!\n", name);

 /* see Exercise about using validation */

 State->SavePointer = 0;

 }

}

static void

endElement(void *userData, const char *name)

{

 t_State *State = userData;

 if (State->Saving) {

 /* stop saving text until the next element */

 State->SavePointer = 0;

 }

 if (strcmp(name, "Author") == 0) {

 State->Saving = 0;

 }

}

static void

textHandler(void *userData, const char *theText, int len)

{

 t_State *State = userData;

 char **destination = State->SavePointer;

 /* since the expat callback does not tell us which elemennt

 * we are in, we look at the saved state and see if we're saving.

 * if we are, we use SavePointer to tell us where to store the data.

 */

 if (!State->Saving || !State->SavePointer) {

 return;

 }

 *(State->SavePointer) = (char *) malloc(len + 1); /* see Exercises */

 memcpy(*destination, theText, len);

 (*destination)[len] = '\0';

}

static void

printAuthors(t_Author *List)

{

 while (List) {

 printf("%s: %s",

 List->id,

 List->LastName

);

 if (List->FirstNames && *List->FirstNames) {

 printf(", %s", List->FirstNames);

 }

 printf("\n");

 List = List->Next;

 }

}

/** Now a main() that will use all these functions we've defined!
 **/

int

main(int argc, char *argv[])

{

 XML_Parser parser = XML_ParserCreate(NULL);

 char buf[BUFSIZ];

 int finished;

 FILE *f;

 t_State *State;

 if (argc <= 1) {

 fprintf(stderr,

 "%s: supply an XML file as an argument.\n", argv[0]

);

 exit(1); /* fail */

 }

 f = fopen(argv[1], "r");

 if (!f) {

 perror(argv[1]);

 exit(1);

 }

 State = (t_State *) calloc(1, sizeof(t_State));

 /** Register the callbacks so that expat will call these
 ** functions when the appropriate events occur:
 **/

 XML_SetUserData(parser, State);

 XML_SetElementHandler(parser, startElement, endElement);

 XML_SetCharacterDataHandler(parser, textHandler);

 /** Now read the input a block at a time, passing each

 ** block to expat. Expat will call our functions.
 ** It would be more efficient to use stat() and read the
 ** whole file into memory, I expect, but this way works if
 ** we're reading chunks of data from a network socket too.
 **/

 do {

 size_t len = fread(buf, 1, sizeof(buf), f);

 finished = len < sizeof(buf);

 /* If we read fewer bytes from the file than we asked for,
 * this is probably the last chunk of data in the file.
 * A return of -1 from fread() means an error ocurred.
 * Some implementations set an error or EOF condition too,
 * but it's not necessary to test for EOF in more than one way.

 * If you used sockets and read(2) you'd test for EINTR or
 * EAGAIN here, probably; see the man page for read(2).
 */

 if (!XML_Parse(parser, buf, len, finished)) {

 fprintf(stderr,

 "%s at line %d\n",

 XML_ErrorString(XML_GetErrorCode(parser)),

 XML_GetCurrentLineNumber(parser)

);

 exit(1); /* fail */

 }

 } while (!finished);

 /* We have finished with the parser now: */

 XML_ParserFree(parser);

 /* We've finished with the input file: */

 fclose(f);

 /* now print the resulting data structure
 * An important note: if we encountered a parse error, we called
 * exit() above. Since expat passes objects back as soon as it finds
 * them in the input, you must think carefully about error handling.
 * An error in the input means that the elements you have seen so far
 * should be discarded. In this example, we call exit() on an error,
 * so that's not an issue, but for a real program it might be!

 */

 if (State->Authors) {

 printAuthors(State->Authors);

 }

 exit(0);

}

SAX: Ælfred was a Saxon

David Megginson was heavily involved in the XML initiative, and was one of a number of such people who decided to write his own XML processor. It quickly became clear that lots of people were writing parsers, particularly for use from Java, and the APIs were all incompatible. The JUMBO XML browser that Peter Murray-Rust was developing for the biochemical industry could use any of a number of parsers, but at an expense of difficult-to-modify code.

The solution was, of course, for all the people involved in writing parsers to agree on one interface. This usually takes either coercion or chutzpah, and David Megginson is lucky enough to have the latter. David's own parser was called Ælfred, named after the Saxon king; the Simple API for XML, SAX, continued the theme.

SAX is an event-based API, rather like the expat one we saw in the previous section. Like expat, a SAX parser does not build up a data structure in memory for you, but rather, hands back fragments of XML to your application as soon as it sees them.

The full SAX API is documented at http://www.megginson.com/SAX/ and is also found in the Resource Guide. We'll look at a Java example.

example SX driver

SAX in Java and Perl and C

The Document Object Model

[approx 2 pages. It's not really relevant to this book]

Exercises

The comments in the sample expat program mention several bugs. What are they? What happens if the text handler is called more than once for the same element, perhaps for a piece of text that was longer than the input chunk? How could you test this? How could you make the program robust against this situation?

The sample expat program might go horribly wrong if you hand it a document based on another sort of DTD, one in which an Author element was empty, for example. You could help matters along by enforcing the use of the right DTD. At the time of writing, expat did not have an interface to do this. How might you extend expat in this way? What if expat doesn't validate its input? Investigate the SP validating parser.

How could you handle database update from an expat program in the face of possible syntax errors in the input? One approach would be to use a database transaction around the call to XML_parse() in main(), if the database you are using supports transactions (MySQL does not). Another is to build up a complete data structure in memory and check it for completeness before performing any database operations. What are the memory and performance trade-offs?

Further Reading

[@@TODO will fill this in when the resource guide is more solid -- Liam @@]

ESIS

SAX

SP and expat

DOM

Perl Modules

Java

Python

