Chapter 6:

XML Database Applications

This Chapter is about combining the techniques described in the first five Chapters of the book, choosing architectures and strategies, and making your own complete XML-based applications with relational back-ends. A sample application is given, BookWeb Search; this example is expanded on in later Parts of the book, and you can download the code from the companion web site, or try it online. You'll need your copy of this book to hand to log in if you want to try updating the database.

Understanding Requirements

You should start out by writing down some things, setting them down clearly, and, if necessary, getting everyone involved in the project to agree to them. Sometimes even working out who should be involved can be difficult, but it's often very important to get right.

The following seven sections show the main things to consider.

Who are your users?

Are they primarily technical people, or less computer literate? If you are writing an interface to a school timetable for seven-to-ten-year-olds, your user interface will (presumably) be different than if it's for tie-and-suit-clad executives of Fortune 500 businesses.

A related question is "how much do you trust your users?" If the answer to that is that you give them complete read/write access to the relational database, your application might be a lot simpler than if you wear a long trench coat and dark glasses and think everyone is out to get you! This book is not about security; if security really is an important issue for you (as it often is), hire a very good consultant to help you with it, and then listen to what the consultant says!

Where are your users?

If your users are all on your local machine, or are all users of your departmental internal network, you have a number of immediate benefits:

· You may know what software they are going to use, or may even be able to tell them what to use.

· You can ask them what they want, or need, and respond to that directly.

· You know if they all speak the same language, or whether you will need a multilingual interface.

If your users are on an Extranet, that is, a virtual network that includes more than one organisation, you probably have less control than if they are on a corporate Intranet or local area network.

If the users of your application are on the Internet, and the application is public, you will probably need to cater to a fairly wide range of people. You may also have to cope with automatic search engines visiting your site to index all the pages; Part Four of this book, Links and Metadata, has more to say on that topic.

Finally, if the users are culturally diverse, you may need to ensure that the application is accessible to people who can't use a mouse, are using a text-based web browser such as Lynx (if it's a web application), or who are using a screen-to-voice reader or a Braille terminal. Being told to click on the image for more information is fairly frustrating if you are using a character-based browser that supports neither images nor mouse! Some parts of the world have laws requiring that business applications or information be made accessible. The web site http://www.yuri.org/ (the Yuri Rubinsky Insight Foundation) is a good start for information about how to do that.

Why do they want the data?

If you are making information available for people to load into spreadsheets, word-processing applications and their own databases, one choice would be to use the XML data as a hub format and to convert to other formats either nightly or on the fly. The section XML as a Hub Format later in this chapter describes that.

If you are building XML export so that people can run other tools on the data, rather like the SlashDot web site (http://www.slashdot.org/) with its daily summaries, plain XML output is fine. Chapter Four in this Part, Generating XML, probably contains most or all of what you need; the section Putting XML on the Web later in this chapter may also be of use.

If you're planning on using the new Web Browser XML-specific client features to make a "truly dynamic site", as the marketers might say, see the section XML in the Browser in this chapter. You'll probably be using Java or JavaScript, but depending on who your users are, you may also need to provide good old HTML too.

If you are generating XML to someone else's specification, you should start by asking them for a DTD (Document Type Definition; see Chapter One, Just Enough XML) or an XML Schema, together with sample marked-up documents or data, and any other design documents and specifications they have. If it's an industry standard DTD such as the Text Encoding Initiative's XML TEI, the aircraft industry's ATA series, or the Resource Description Framework (RDF), there are probably web sites with examples and specifications galore. The Resource Guide in this book gives pointers to some of these industry standard specifications.

Make a list of specific features that are requested, if any. Usually you can press people for why they are asking for a specific feature, and often a true and much simpler requirement emerges. It's always worth talking to the end users, the actual consumers of your product.

What does the Database look Like?

Make sure you can draw a picture of the database, whether with a formal entity relationship diagram or an informal pencil sketch; make sure that you have a complete listing of the tables, their keys, and what they mean.

Can you change the relational database to make your project easier? If so, you should think about the project more carefully, and perhaps read at least the start of Part Three of this book for other ideas.

How large is your database, and what are you exporting? If you have fifteen terabytes of corporate sales information to transfer every hour, you might need a distributed cluster of high-end servers with OC48 links just to move the data. A more likely scenario is the difference between a few hundred records and a few million. You will need to make sure you don't make the server do too much work, and that means dividing up the work between client and server.

If you have a lot of Mixed Content, that is, if you have paragraphs and running text with embedded elements, you may be better of with one of the hybrid solutions from Part Three. If you have deeply nested structure, and most of your queries are going to involve finding a document or element and navigating around there, "go left one element, along two, and take the first child", then you should look at an Object Oriented database.

The fastest relational database is the one with fewest things in it; the fastest query runs against the smallest table. This means that you'll get better performance if your database has a reasonable number of reasonable-sized tables, not one huge long skinny one (large table) or thousands of tiny ones (too many tables). What is "reasonable" depends mostly on your database software and your hardware.

What will the XML look like?

The nature of the XML you have to produce can make a large difference both to the database requirements and to the architecture you use. The simplest XML is a direct reflection of your relational data, one table at a time. If your database supports it (MySQL does not), an SQL cursor is probably the most efficient approach; if not, a join such as those shown in the Just Enough SQL chapter will do.

If you need to build lots of cross-references, you may need auxiliary tables, intermediate data structures or even multiple passes over the input.

Usually, the data in a relational database ends up turning into very straightforward XML, if you can apply the simplest possible transformations. If you have to do complex textual transformations, consider using a text processing language such as Perl. If performance is a major issue, sometimes it's cheaper to buy more hardware than to spend a long time programming around the problem. Almost every program can be sped up by a good, experienced programmer; hiring a consultant to help can be appropriate here, since optimisation may not be a skill that you need every day.

Who is writing the code?

If the primary coders are two Omnimark programmers and a part-time Perl hacker, you probably shouldn't be attempting a 300,000-line C++ project.

The purpose of XML is to make information more accessible to computer programs. This means that if you have XML, you will need computer programs. And if you don't have the programs, you'll need programmers.

In a text-processing environment, a Unix Perl script, five sed scripts and bit of sh programming will often go further than several months of dedicated C or C++ programming on certain other more proprietary operating systems. If you don't have access to programmers, consider hiring some, at least to get you started. The largest benefit of XML is that you can automate lots of things you used to do by hand; learning that way of looking at things involves listening to programmers, even if they have long hair and bare feet and smell a little odd sometimes.

WARNING

This all sounds very obvious, but It is the single most overlooked factor, and forgetting it is one of the largest causes of project failure. Your project is more important than your dress code. Hire the right staff, or if you can't do that, choose the right project with the staff you have.

When do you need it by?

If your project is due in two weeks, try a Unix shell script, a Java Servlet, a Perl script, anything you already know how to do; if you have six months, you can maybe learn something new.

Almost all computer projects are massively over budget and massively late. See Yourdon's book on Death March Projects for some ways to try to handle this problem. A lot of it is because people specifying deadlines are usually managers who don't understand the technicalities involved, and gloss over them.

XML Architectures

After you have answered the questions above, you may be in a position to evaluate the best approach to take for your project. This section gives some ideas that are commonly used, together with some pitfalls to avoid.

XML for Backup or Data Transfer

Figure One shows a possible architecture in which a database is exported in XML and then read back on another system. Companies such as Data Mirror have very efficient software to transfer data from one database to another, but they generally use proprietary intermediate files. If you want to restore from a five-year-old backup, you'd better use open standards.

It's tempting to try to keep the generated XML as terse as possible. Don't do this. Use good compression software; gzip and bzip2 on Unix are free and get very good results. If you have to decipher complex table names five years from now, you'll thank yourself.

Make sure that your backup is complete. You might test for completeness by restoring to a clean database, and then using the database's own dumping mechanism to dump both databases. Compare the dumps carefully.

If you have additional documentation over and above the schema, consider including that in a backup.

Finally, remember that the dumped database should not be made available to people who aren't supposed to have read access to the database itself!

Figure 1: XML for Backup or Data Transfer

figure 1 ch06fig01.tif

XML as a Hub Format

If you have a lot of different databases or applications, you might be able to define a single XML document that can be read by any of them. Figure 2 illustrates this.

If you can't do that, you might end up with platform-specific information in a single file which is still easier to generate and maintain.

<Order systemID="order3901">

 <Item productID="hosiery1191">

 <Description>Black socks, wool, knee-length, size 11</Description>

 <Quantity n="4">4 pairs</Quantity>

 <PriceEach lira="14000">

 </Item>

</Order>

Figure 2: XML as a Hub Format

figure 2 ch06fig02.tif

XML for Interchange With Other Organisations

All over the world companies and organisations exchange product data. Many industries have their own XML or SGML formats that they have defined, usually by forming a consortium. Some examples:

The semiconductor industry (Pinnacles)

Documents conforming to the Pinnacles DTD are used to store and exchange data sheets that document electronic components in detail.

The aircraft industry (ATA 2100)

Even a small aircraft needs tens or hundreds of thousands of pages of documentation. There are flight manuals, training manuals, repair manuals, in-flight fault isolation manuals, documentation for scheduled maintenance, wiring manuals, mechanics' task cards, and even notes on what to do if the coffee machine won't brew. And it's all in SGML.

The ATA is likely to move to XML in the future.

The humanities (Text Encoding Initiative)

The Text Encoding Initiative is an attempt to provide a framework for marking up of texts with sufficient richness to facilitate scholarly study. The TEI Project has been enormously successful, and the XML version of the "TEI Lite" DTD is already quite widely used.

If you are working in any field involving applying markup to existing texts, the TEI should be one of the first places to look for inspiration.

Technical Documentation

The Docbook DTD is widely used for technical publishing, both of manuals and of books. There are freely available software tools to format Docckbook-conformant SGML or XML documents using TEX, automatic conversion to RTF for Word, electronic browsers, and other tools.

Others

The newspaper industry, the footwear industry, the automobile industry, scientific journals, the list goes on. If the thought of XML-based Shoes and Socks surprises you, it's a good reminder of the extent to which XML is changing our technical infrastructure.

Getting Involved

If your organisation is part of an industry that has a standard interchange format, use it. Don't invent your own. If the interchange format doesn't support your business practices, ask the question, should we change? The difference between using off the shelf software, or free software that other people are also using, and taking a commercial package and customising it, is rarely less than a factor of ten in cost.

If there is a consortium, join it. You will learn a lot about how your partners and competitors work, and whether the interchange format is something just for show, or whether it is really central. Of course, by using it yourself, you make it more mainstream and help to spread the interchange of free information.

If there is no consortium, consider starting one. Even an open mailing list can be enough, together perhaps with an announcement on the Usenet comp.text.xml newsgroup or on the xml-dev mailing list. There is more information on these forums in the Online section of the Resource Guide in this book.

Many organisations use their own internal formats, and convert to an interchange format. This is often because they carry extra proprietary information in their documents, and don't want to give that information out. Figure 3 shows such an architecture.

Figure 3: XML for Interchange With Other Organisations

figure 3

XML For Paper-Based Publishing

At the time of writing, the best ways to go from XML to Paper involve either very expensive ($50,000+) commercial SGML-based packages or complex but free solutions. You can use TEX together with either a DSSSL engine such as Jade (most complex) or write your own perl script to convert XML to TEX and write macros. If you use someone else's DTD, there is a chance that the macros are already available; Norm Walsh's package for the DocBook DTD is a good example.

Figure 4 shows one way to publish a view of a database on paper and on the web, using open source tools.

Figure 4: XML for Paper-based Publishing

database -> cgi or report gen -> html

database -> cgi/report gen -> xml -> dsssl -> jadetex -> PostScript

XML for Interchange Between Applications

This is really a variation of the Hub Format described above, combined with the idea of an interchange format. For example, you might want to save output from a database and insert it into a spreadsheet, check the results, and then use a 3D graphics rendering package to make a stunning representation to hand to someone who wears shoes and a tie but isn't very numerate. You might be able to use a "comma separated value" file to go from the database to the spreadsheet, but then you'll probably lose information. A Web-based approach (even on a single computer) might be to have a CGI-script that can read your XML hub format and generate data for the spreadsheet and for the rendering engine; that way, you can't doctor the figures in the spreadsheet before rendering them!

Figure 5 is a rough sketch of such a system, but if you use it in a proposal to management, cover up the previous paragraph.

Figure 5: Saving Time and Money With CGI and XML

x

Links, RDF and Metadata

This topic is described in more detail in Part Four of the book; it's listed as a heading here for completeness.

XML-Aware Web Browsers

Some of the newer web browsers are already XML-aware, and some are not. On an Intranet, you can mandate that everyone has access to Mozilla (http://www.mozilla.org/) or, with somewhat weaker standards compliance and definitely not open source, Internet Explorer 5.

On the Internet, many people are using older software, or newer software that isn't XML-aware. It has been written, On the Internet, no-one can hear you scream, but you still have to deal with it. One approach is to generate XML but be able to convert it to HTML on the fly, perhaps using XSL. The next section ("XML as an Intermediate Format For Advanced Web Pages") expands on this theme.

Another approach is to generate HTML that's also XML-conformant, and use Cascading Style Sheets to give some of your readers a better deal. You can use the HTML SPAN element and the CLASS attribute to preserve a lot of the XML information, although you lose the benefit of using a DTD or Schema to provide structure validation specific to your application.

Figures 5 and 6 show these two options, and Figure 7 is a screen sot of Mozilla running with the Enlightenment window manager under Unix, and also running under Microsoft Windows 98 to show that it's downward compatible.

Figure 5: Generate XML and convert where needed

Figure 6: Generate HTML that happens to be XML

Figure 7: Mozilla on Windows and Unix (actually Red Hat Linux)

figure shewing Mozilla

XML as an Intermediate Format For Advanced Web Pages

This is a subtle distinction from the previous example; the approach here is to generate an XML document, and then to process it to create part or all of a web site.

An example will clarify; this example reappears in full detail in Part Three of this book, and again in Part Four where we'll talk about cross references and show the source code that was used.

I have typed in a small Eighteenth Century dictionary, by Nathan Bailey, of the Canting Language; these were slang terms used by thieves, criminals and wandering beggars. Let's suppose for now that the dictionary is loaded into a relational database table, perhaps like this:

CREATE TABLE canting (

 headword VARCHAR(30) PRIMARY KEY;

 definition VARTEXT;

);

Here are a couple of sample entries:

mysql> SELECT * FROM canting;

+------------+---+

| headword | definition |

+------------+---+

| ABRAM-COVE | a lusty Rogue, with hardly any Cloaths on his Back: |

| | a Tatterdemallion. |

+------------+---+

| AMBIDEXTER | one that goes snacks in Gaming with both Parties; also |

| | a Lawyer that takes Fees of Plaintiff and Defendant at |

| | once. |

+------------+---+

One way to generate an HTML dictionary would simply be to have a form that let people search for entries, but that's not very interesting. A browsing interface is a lot more fun.

We'll make a main dictionary page with some notes about the dictionary and links to a separate page for each letter (A, B, . . . Z). Each of those pages will list all the words starting with that letter, and have a link to a separate page for that word and its definition. Finally, the pages for the definitions will each have Next, Previous and Up links, so people can move around quickly. Figure 8 sketches this organisation; a quick pencil sketch like this is often a good first step in working out a design.

Figure 8: Pencil Sketch of Web Layout for Dictionary

x

Now, we could easily make the page for each letter using something like SELECT * FROM canting WHERE headword LIKE 'A%'; and so forth; this is very easy with the perl DBI module. The individual pages could be generated on the fly with PHP.

Such a scheme will work well, but it places a load on the database for every fetch. Worse, it's wrong.

Why is it wrong? It's wrong because the data isn't ever going to change, apart from fixing typos. The dictionary was printed in 1736 and it's finished. The database might be useful for other reasons, and this is supposed to be an example, so let's pretend we need the dictionary in a relational database. But let's generate a single static XML file, a bit like this:

<entry><title>ABRAM-COVE</title>

<p>a lusty Rogue,

with hardly any Cloaths on his

Back: a Tatterdemallion.</p></entry>

NOTE

For easier proof-reading, I kept a hard return wherever the input line ended in the printed book. I typed the XML using the vi editor, and included a comment at every page and column boundary, also to help with proofing, since the spelling in the dictionary is no longer current.

This is slightly more markup than you might expect, but some of the entries turned out to be several paragraphs long.

Now that we have the whole dictionary in XML, we can read it into a Perl associative array; generating the title pages is simply a question of iterating through the keys of that array, using Perl's sort and grep functions.

More interestingly, we can handle implicit cross-references: wherever a word occurs that's defined elsewhere in the dictionary, we'll surround it with an HTML link to the generated page for that definition. This is lots of fun, and also really helps people look around the dictionary. Who would ever have guessed that a File was someone who helped a pick-pocket?

Generating the links to the cross references is easy with the intermediate file; if the Perl script had to go to the database for each word in the input to see if it was there, you'd wait forever. Furthermore, even though the Perl script takes a couple of minutes to run through the whole dictionary, the HTML files don't change often, and the resulting pages are very fast. Figure 9 shows a screen shot of part of the entry for Gypsies, so you can see the cross-references in place.

If your data doesn't change often, static intermediate files can be very useful.

Figure 9: Gypsies (possibly a somewhat fanciful description)

[image: image1.png](e £ v s o ks Tk o Cevn 9
LA

ABCDEFGHUKLMNOPQRSTUVWXYZ

GYPSIES

GYPSIES, They endeavour to persuade the Ignorant, that they derive their Origin from the Zgypfians,
a People heretofore very famons for Astronomy, Natural Magick, the art of Divination, &c. and
therefore are great Pretenders to Fortune-telling. To colour their Impostures, they artificialy discolour
their Faces, and rove up and down the Couniry in a Tatterdemalion Habit, deluding the ignorant
Vulgar, and often stealing from them what is not too hot for their Fingers, or too heavy to carry off.

Itis the Custom of these Wretches to swear al that are admitted into their Fraternity, by a Form and
Aticles annexed info i, administred by the Principal Maunder or Roguish Strowler, and which they
generally observe inviolably. The Manner of admitting a new Member, together with the said Oath and
Asticles, are as follows

‘The Name of the Personis first demanded, and a Mick-name is then given him in its stead, by which he
is ever after called, and in Time, his other Name is quite forgotten. Then standing up in the middle of
the Fraternity, and directing his Face to the Dimber-Damber, or Prince of the Gang, he swears in this
Manner, as is dictated to him by one of the most experience

1 Crank-Cuffin do swear to be a True Brother, and will in all Things, obey the
Commands of the great Tawny Prince, and keep his Councel, and not dimige the
Seerets of my Brethren

Twill never leave nor forsake this Company, but observe and keep all the Times of
Appointments, cither by Day or by Night, in any Place whatsoever.

Twill not teach any one to cant; nor willI disclose ought of our Mysteries to them,
although they flog me to death

Twiltake my Prince's Part against allthat shall oppose him, or any of us, according to the
utmost of my Abilty, nor will I suffer him, or any belonging to us, to be abused by any
strange, Abrams. Rufflers, Hookers, Palliards. Swadlers, lrish- Tovls, Swig-men

[Notfication Component] Document: Done (15 z205) Buld 10: 1008052412
[e—

Summary

In this Part of the Book, we have looked at reading and writing XML, at client/server architectures and at SQL. We have looked at some ways of combining these techniques to make complete applications.

The Resource Guide (Part Five of this Book) gives some pointers to working tools that you can use.

Before you get started, though, take a look at the next two Parts; a relational database may be a familiar and solid tool, but it is not always the best tool.

