Chapter 7

What is a Document?

This chapter expands on a few central aspects of Chapter One, Just Enough XML, and is aimed in particular at people from the database world who may not be used to working with textual documents.

The main was in which an arbitrary XML document, in general, differs from the sort of data you find in a "typical" text-book relational database include:

1. Fields and Data are normally intermixed (mixed content);

2. Any document can have its own schema, or DTD;

3. Fields do not have length restrictions;

4. Fields can nest arbitrarily;

5. Fields have sequence.

The next few sections describe each of these in turn.

Mixed Content

Mixed Content occurs where a mixture of text and elements is allowed:

<!ELEMENT Paragraph

 (#PCDATA|Emphasis)*

>

Here, a paragraph is defined as containing an arbitrary mixture of textual content (#PCDATA) and Emphasis elements. Here are some examples:

<Paragraph>Welcome to my café.</Paragraph>

<Paragraph></Paragraph>

<Paragraph>This is <Emphasis>Much</Emphasis> more interesting.</Paragraph>

<Paragraph><Emphasis></Emphasis><Emphasis></Emphasis></Paragraph>

Notice how #PCDATA matches the empty string, so that the empty paragraph and the empty Emphasis elements are perfectly valid. There is no equivalent of the SQL "NOT NULL" clause in an XML element's content model. This absence was one of many of the driving forces behind the XML Schema movement, but at the time of writing, XML Schemas (or Schemata) are in a draft stage.

There can be any number of Emphasis elements in our Paragraph. It is not possible to allow text inside the Paragraph and yet also restrict the number of times in which Emphasis can occur.

Therefore, if you are storing XML documents in a database, you will probably have to deal with multiple elements occurring within mixed content.

Of course, Emphasis is quite likely to have a mixed content model too; we'll return to that under Nesting, below.

An element need not start or end on a word boundary: it's not <Emphasis>im</Emphasis>possible to embed markup within a word.

The XML Specification says that wherever you have mixed content, the declaration must be in the form of an optional repeatable or-group whose first component is #PCDATA: in other words

<!ELEMENT illegal-example

 (Emphasis|#PCDATA)+

>

is illegal becasue it uses a "+" instead of a "*", and because #PCDATA is not at the start;

<!ELEMENT also-illegal

 (#PCDATA, Emphasis)*

>

is illegal because the comma (",") is used instead of the vertical bar ("|"). Note that this second content model is in SGML called a pernicious mixed content model, because of the way white space is treated within it. It is sufficiently complex to get right in SGML that it was simply disallowed in XML.

Per-Document Schemata

Any XML document can contain its own Document Type Definition, and can define elements.

<!DOCTYPE boy [

 <!ELEMENT boy (noise|dirt|grin)*>

 <!ELEMENT noise (#PCDATA|grin)* >

 <!ELEMENT dirt EMPTY>

 <!ELEMENT grin EMPTY>

]>

<boy>

 <noise>shuffling <dirt/> feet <grin/></noise>

 <niose>SHOUT!</noise>

</boy>

(Whether or not this is an adequate representation of boys is another matter!)

If you want to store this document in a database, you might end up creating a table on the fly, with columns for each element type, or you might instead use a generic schema that copes with XML elements whatever they are called.

What you could not do is have a fixed schema that said that a boy element contained noise, dirt and grin elements, because one day you'll get a document that chooses to define boy differently, and your database will fall over and die.

Field Length is Unrestricted

The boy in the previous example can make just as much noise as he likes, or he can be silent: #PCDATA matches any amount of data, from none at all to millions of terabytes or more.

In a data entry form for a relational database, you might restrict a telephone number to ten digits and a Postal Code to nine characters. But an XML document is not generally bound by such rules.

This isn't always a bad thing: to telephone my father in England from where I live in Toronto, I have to dial fifteen digits, and I fairly often want to give an extension number as part of a 'phone number. In the US, Postal Codes (called ZIP codes there) can be longer than nine characters, too.

It does mean that you will need to experiment and determine the storage overhead of VARTEXT in your database. Some implementations always use a fixed size block and pad it with spaces internally. Of course, adding trailing spaces to elements would also be unacceptable!

Some databases place a maximum length restriction on a field; you may need to use multiple BLOBs to store a paragraph, which can make searching difficult. We return to searching in Part Three of this book, but for now, note also that some databases don't let you search BLOBs with wildcards. The publicly available MySQL database supports both SQL wildcards and Unix regular expressions on VARTEXT fields, however.

Fields can nest arbitrarily

Consider the following content mode:

<!ELEMENT emphasis
 (#PCDATA|emphasis)*

>

<!ATTLIST emphasis
 type (automatic|ripple|flash|smell|bold|italic) "automatic"

>

The following is a valid example of an emphasis element instance in a document:

<emphasis>very, <emphasis type="ripple">very, <emphasis

 type="smell">very</emphasis></emphasis></emphasis>

There could be hundreds of nested emphasis elements in there, and it would still be legal. Since this is the fundamental nature of XML, if you are storing XML documents in a database, you probably have to live with it. Recursion like that is very common in XML. Here is an example from HTML, too:

 <p>First item</p>

 <p>Second item</p>

 <p>here is an li within an ol within an li</p>

 <p>here is another one.

A good database design avoids making the server do all the work, so when you come to implementing nested elements, avoid the temptation to try to use a stupendously complex JOIN. Oracle has implemented some extensions to their database to help with storing XML, but there is still a fundamental disconnect between the flat field in the relational world and the complex nesting field in XML.

Fields have sequence

A chapter might contain a title followed by one or (more traditionally) more paragraphs. If you store the chapter in a database and then extract it, you want the paragraphs to come back in the right order! This seems pretty obvious, but to implement it you might end up giving each paragraph a sequence number and using an ORDER BY clause or an SQL cursor. It's hard to do that efficiently: the author has more than once seen a deign that seems perfect to a database engineer unfamiliar with textual documents, and yet can take half an hour or more to paste a single five megabyte document on half a million dollars' worth of hardware.

It's sometimes tempting to offload some of this work onto the author by giving each paragraph a required Sequence Number attribute. If you do this, consider that an author who needs to reverse the order of two paragraphs, or copy part of a chapter and edit it, will probably forget to change the attributes. Your routine that imports the chapter into the database should therefore reassign all of the sequence numbers at that time, so that the export routine can sort the data.

Sorting items in the database client can be one good way of splitting up the work so that the database server doesn't grind to a halt and start issuing purchase orders for bigger SPARC Servers.

If all this sounds a bit drastic, consider that most relational databases were not really designed for this sort of data, and generally work best with integers rather than paragraphs. You may be able to reconfigure your database to use larger blocks in its BTREE or ISAM physical storage layer to help performance, but, whatever else you do, you will need to deal with storing explicit sequences of elements!

Conclusion

This has been one of the shortest chapters in the book, but the points are all very important. The differences between a relational database and a text document database are in how you look at the data, not just the nature of the data. These differences pervade all the work you will do with XML.

I'll leave you with a slide I've used in Presentations To Managers, who are often very intelligent people but with little technical knowledge or experience with XML. It's unfair, but fun.

Figure 1: A Relational Data Model.

Figure 1: An XML Document

Figure 3: An XML Document stored in a Relational Database

