Chapter 12

Dynamic Hashing: ndbm
This Chapter introduces a database that's very different from any we have mentioned so far. It's the fastest and the simplest, and is freely available. There are several versions, with names like dbm, sdbm, db and ndbm; there is a GNU version called gdbm too. Most of the time, they are interchangeable except for licence restrictions; some of the main differences are summarised at the end of this Chapter, and there are downloading instructions in the Resource Guide.

These databases are supplied in the form of C libraries that you link against; you can also use them with Perl, and there are even native methods available for use with Java. Almost all versions of Unix include at least one version of ndbm.

We will look at what they are for first, so you can decide if you are interested in them or not. After that, we'll describe (briefly) how they work. Some sample Perl and C code follows, and finally we'll talk about the various different versions.

The examples have been tested on FreeBSD 3.3, Solaris 2.6 (SPARC) and Red Hat Linux 6.0. The author has used these and similar programs on machines ranging from a VAX 11/750 under BSD 4.1 through SPARC servers under SunOS 4 and Solaris 2, HP/UX, AIX, OSF/1, Ultrix and many other Unix variants. This is probably the most portable of the C-level technologies discussed in this book, and the Perl interface takes that one step further.

What Does ndbm Do?

Dynamic Hashing libraries perform three main functions: they store an unordered set of key-value pairs, they retrieve any value based on its key, and they let you iterate over all the keys. You use them if you have a lot of values that you look up based on a single value, whether a number or a string. That's very succinct and not at all clear, so let's take the three features one at a time:

Storing an Unordered Set of Key-Value Pairs

You can associate an arbitrary binary value with a string. The string is actually a binary value too, so it could be a Unicode string or an integer or anything else you wanted. The value usually has to be smaller than a kilobyte or so, but this is more than enough for a filename or for a single database field. The newer libraries have a larger limit on the size of a value, or no limit at all.

The Network Information System (formerly known as Yellow Pages) usually uses ndbm to store the map between usernames and password file entries: the network user name is the key, and the corresponding password file entry is the value. Some versions of the X Window system use ndbm to store a database of colour maps; you could think of it as a simple two-column database table:

+-----------+----------+

| Name | Colour |

+-----------+----------+

| red | #FF0000 |

| green | #00FF00 |

| dim brown | #220303 |

| blue | #0000FF |

| . . . |

+-----------+----------+

In Perl, you might write $Colours{red} = "#FF0000"; and the Perl runtime library would take care of the database write for you. The C API is slightly more complex, because dbm stores arbitrary binary data and not just NUL-terminated strings, but it's still pretty easy.*
* NUL is the ASCII code for a byte whose value is zero, not to be confused with NULL, the zero-valued word. On a 64-bit machine, NULL is usually 8 bytes, all of which are zero, where NUL is a single zero byte.

Since the ndbm library has a very small code and memory footprint, and is very fast, it's often used where a relational database would be overkill. Furthermore, since there were no freely available relational databases until relatively recently, ndbm was often a major cost saver. It's still worth using today even without the cost savings.

When Not To Use ndbm

The library has a very small storage overhead, but has no support for transactions, rollback, journaling or multiphase commit. If the system crashes in the middle of a write operation, your database will be toast.

As a result, you should normally use ndbm as a fast cache, not as an authoritative repository for your data. The example in Chapter 15, Hybrid Approaches, uses an XML document as the master, and builds the ndbm database by reading the XML document.

NOTE

There is a compatible library called db available from Sleepy Cat Software which supports some more traditional "database" features. It's included as standard in most BSD Unix distributions, and is often referred to as "BSD db". We will discuss this variant more below, and it was used to run the examples.

Retrieve Any Value By Key Almost Instantly

The original dbm library's documentation claimed that dbm could return the value associated with any key using at most two file system accesses. This was after you'd opened the database, but that's a pretty fast operation since the database must be on a locally accessible file system. None the less, it's pretty fast. After showing how to use ndbm's major functions, we'll do a quick benchmark.

Iterate Over All Keys

Although dbm doesn't usually support queries such as finding all keys greater than 267 in a numeric comparison, it does let you look at every key in turn, one by one, and fetch the values if you are interested. The db library supports sorted b-tree access, which could perhaps be used as the basis for a relational database implementation.

You could, for example, implement "find all keys larger than 27" with (in pseudo-code)

foreach key k:

 if k > 27:

 add k to the result set

 If your database is large, this isn't going to be fast enough. It does, however, work for copying a database, and the iteration has very low overhead (typically doing a single disk access for every twenty to fifty items) so it's a fast way of dumping a dbm database. It's also the only way to dump a dbm database, unless you have an external list of keys.

How ndbm Works

The ndbm library, and most of the variants of it, use a technique called Dynamic Hashing, which you can find described in Knuth's The Art of Computer Programming. If you are not familiar with hashing, turn to your copy of Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman (informally known as the Dragon Book because of the cover illustration).

An ndbm database is (conceptually at least) a disk file organised as an array of disk blocks. The database size is always a power of two blocks; as a result, ndbm can use a fixed number of bits to access any block. The database starts out empty, then expands to use one bit, so that blocks 0 and 1 are reachable. When either of those two blocks fills up, the database expands to use two bits, allowing blocks 0, 1, 2 and 3, and using two bits for the address.

To store an item, ndbm first makes a hash of the key, to get a 32-bit (say) integer. It then looks at the least significant bit, or, if the database is using six bits, the least significant six bits, of the hash. This gives it a block address, so ndbm fetches that block. If there is room to store the data item, in it goes. If not, dbm has to expand the size of the database to seven bits. Doing this is fairly slow, as ndbm has to look at every key, and potentially move it to the correct new block. Once this is done, the item can be stored.

To retrieve an item, ndbm computes the hash as before, fetches the right block, and scans through to see if the item is there. Since the blocks are usually fairly small (one to eight kilobytes, depending on the implementation and compile-time options), this is very fast.

Some versions of ndbm have two separate files to store the database, and some just use one. Some versions cope with the case where a key or value is too large to fit in a single block, and some don't. They are all excellent at storing a lot of small keys with corresponding small values. A good use might be to map from titles of encyclopaedia entries into filenames or article numbers. As we shall see in the Section Performance below, ndbm can store hundreds of items per second; a run to store 10,000 items took 17 seconds.

Using ndbm

The following sections describe how to use dbm, and give some simple sample code. The code isn't all that useful, but it does work; you can compile the examples and try them. It's worth starting with these small examples in order to work out which version of dbm you have installed and how to use it.

After presenting the examples, we'll talk about the various dbm versions, and then show how to compile the example code with some of them.

Creating a Database and Saving a Value

The model is that you first open a database with dbm_open(); this returns a handle, usually of type DBM *, which you then pass to all of the other dbm functions.

DBM *myDB = dbm_open("james", O_RDWR|O_CREAT, 0766);

This will open a database called james for reading and writing. If the database does not already exist, the O_CREAT flag tells dbm_open() to create it, using file permission mode 0766 (in octal, so the leading 0 is important). See the manual page for open in Section 2 of the Unix Programmers' Manual for more details of these flags and modes. The constants O_RDWR, O_RDONLY and O_CREAT are defined in the <fcntl.h> header file.

Once you have opened a database, you can store a value in it using a data type called a datum, which is usually defined in the <ndbm.h> header file to be something like this:

typedef struct {

 char *dptr;

 int dsize;

} datum;

The dbm functions are unusual in that they often take one or more datum structs as arguments, not pointers to them; they can also return such structs. If you learned C by reading the first (pre-ANSI C) edition of Kernighan & Ritchie's excellent book, The C Programming Language, be aware that passing structs as arguments and returning them was added to C after that book was published (as was the enum type). The second edition, revised for ANSI C, does discuss these features of the language.

To store a value under a given key, you first store both the key and the value in separate datum objects in memory. Here is how you might store a string under the integer key 3:

datum key, content;

int i = 3;

key.dptr = (char *) &i;

key.dsize = sizeof(int);

content.dptr = "Simon";

content.dsize = 6; /* S i m o n \0 */

dbm_store(myDB, key, content, DBM_REPLACE);

The return value of dbm_store() is used in the complete example that follows to work out whether the store succeeded or not. The DBM_REPLACE flag tells dbm to replace an existing value if it's there; you can also use DBM_INSERT, in which case an existing value is not changed.

A complete example follows; you can compile this into a C program that takes a database name, a key and a value, and stores the value under the given key, in the database that you name. The database is created if necessary.

#include <errno.h>

#include <string.h> /* strings.h on some systems */

#include <stdio.h>

#include <fcntl.h> /* for O_RDWR */

#include <ndbm.h>

/* save database key value

 * saves the given key

 */

char *progname = "save";

static char *systemError();

int

main(

 int argc, char *argv[]

)

{

 int createmodes = 0644;

 DBM *theDBM;

 /* save the program name for error reporting */

 progname = strrchr(argv[0], '/');

 if (progname) {

 progname++; /* step over the / */

 } else {

 progname = argv[0];

 }

 if (argc != 4) {

 fprintf(stderr, "%s: usage: %s dbmfile key value\n",

 progname, progname

);

 exit(1);

 }

 theDBM = dbm_open(argv[1], O_RDWR|O_CREAT, createmodes);

 if (!theDBM) {

 fprintf(stderr, "%s: failed to open database %s: %s\n",

 progname, argv[1], systemError()

);

 }

 /* store the value, or try to: */

 {

 datum theKey;

 datum theContent;

 int status;

 theKey.dptr = argv[2];

 theKey.dsize = strlen(argv[2]) + 1; /* include the \0 */

 theContent.dptr = argv[3];

 theContent.dsize = strlen(argv[3]);

 status = dbm_store(theDBM, theKey, theContent, DBM_REPLACE);

 switch (status) {

 default:

 case -1:

 fprintf(stderr,

"%s: insert into %s of key %s failed, code %d\n",

 progname, argv[1], theKey.dptr, status

);

 /* not all versions of ndbm let us work out what the

 * error was exactly; see the manual page for ndbm on

 * your system.

 */

 exit(1);

 case 0: /* OK */

 case 1: /* it was already there, value replaced */

 dbm_close(theDBM);

 /* NOTE: dbm)close() is declaerd as having no

 * return value, even thouh the close could potentially

 * fail if the disk was full. The Berkeley db

 * interace corrects this.

 */

 }

 }

 exit(0);

}

static char *

systemError()

{

 return strerror(errno);

 /* not all systems have strerror(); if yours doesn't,

 * you may have this instead:

 * extern char *sys_errlist[];

 * extern int sys_nerrs;

 * you have to check errno < sys_nerrs, and, if so,

 * return sys_errlist[errno]

 * else return "unknown error"

 * There may also be a dbm_error(), which returns

 * an integer of some sort to describe the most recent

 * error; it's probably an errno sort of integer.

 */

}

Save this example in a file called save.c (or download it from the web site for this book, or get it from the CD-ROM if there was one in your edition of the book) and compile, perhaps with

$ cc -o save save.c -lndbm

See the section Compiling the Examples below if you have problems. If you are using Windows, both sdbm and db have been ported to Windows; see the Section Versions of ndbm below.

Then run it:

$./save cities "Paris" "North of France. Traffic hectic."
$

There is no output if the operation succeeded, as is usual on Unix.

$ ls -l cities*
-rw-r--r-- 1 liam liam 16384 Dec 31 03:57 cities.db

$

You may find that you have two files, cities.dir and cities.pag, with some versions of dbm.

The next Section shows you how to get the value out again later.

In Chapter Eighteen we will see an example that uses a dbm database to store link targets, so as to be able to serve an XML file over the web with links inserted on the fly.

Reading a Value

You can read a value back with dbm_fetch() like this:

datum key, value;

int i = 3;

key.dptr = (char *) &i;

key.dsize = sizeof(i);

content = dbm_fetch(myDBM, key);

Note how dbm_fetch() is returning an entire struct, not just a pointer or scalar value.

If the item was not found, content.dptr will be zero (NULL). In some implementations, content.dptr will also be zero, but this cannot be relied upon.

The dptr pointer is pointing to static memory within the dbm library; you will need to copy the value before calling any dbm functions again. Some more recent implementations (notably db) use malloc() to store the value, and thereby help to make a thread-safe version. If you are using threads with dbm, you probably need to write a set of wrapper functions around them to handle locking.

The following example program fetches a value back from a database:

#include <errno.h>

#include <string.h> /* strings.h on some systems */

#include <stdio.h>

#include <fcntl.h> /* for O_RDONLY */

#include <ndbm.h>

/* usage: fetch database key

 * fetches the given key from the named database

 */

char *progname = "fetch";

static char *systemError();

int main(

 int argc, char *argv[]

)

{

 int createmodes = 0; /* value never actually used */

 DBM *theDBM;

 /* save the program name for error reporting */

 progname = strrchr(argv[0], '/');

 if (progname) {

 progname++; /* step over the / */

 } else {

 progname = argv[0];

 }

 if (argc != 3) {

 fprintf(stderr, "%s: usage: %s dbmfile key\n",

 progname, progname

);

 exit(1);

 }

 theDBM = dbm_open(argv[1], O_RDONLY, createmodes);

 if (!theDBM) {

 fprintf(stderr, "%s: failed to open database %s: %s\n",

 progname, argv[1], systemError()

);

 exit(1);

 }

 /* store the value, or try to: */

 {

 datum theKey;

 datum theContent;

 int status;

 theKey.dptr = argv[2];

 theKey.dsize = strlen(argv[2]) + 1; /* include the \0 */

 theContent = dbm_fetch(theDBM, theKey);

 if (theContent.dptr == NULL) { /* not found */

 fprintf(stderr, "%s: key %s not found\n",

 progname, theKey.dptr

);

 exit(1);

 }

 if (theContent.dsize == 0) {

 /* found but had zero length, or

 * in some implementations, not found

 */

 fprintf(stderr, "%s: key %s empty\n",

 progname, theKey.dptr

);

 exit(0);

 }

 printf("%*.*s\n",

 theContent.dsize,

 theContent.dsize,

 theContent.dptr

);

 dbm_close(theDBM);

 /* NOTE: dbm)close() is declaerd as having no

 * return value, even thouh the close could potentially

 * fail if the disk was full. The Berkeley db

 * interace corrects this.

 */

 }

 exit(0);

}

static char *systemError()

{

 return strerror(errno);

 /* see comments in save.c for this routine */

}

Save this in fetch.c and compile as for save.c:

$ cc -o fetch fetch.c -lndbm
You can use it like this:

$./fetch cities "Paris"

North of France. Traffic hectic.

$

You can store any number of values with the save program and fetch them in the same way.

Some versions of dbm place limits on the maximum length of a key or value; there are some other size restrictions that are described in the section called Technology, below.

Deleting a Value

If you want to delete all values, and there are no processes using the database, it's sometimes easiest to remove the file(s). You can remove an individual entries with the dbm_delete() function:

datum key, value;

int i = 3;

key.dptr = (char *) &i;

key.dsize = sizeof(i);

dbm_delete(myDBM, key);

The return value from dbm_delete() is -1 if there was an error, or if the item was not present. You can use dbm_error() to distinguish between the two cases on systems that provide it.

The following program lets you delete a key-value pair from a database by specifying the key:

#include <errno.h>

#include <string.h> /* strings.h on some systems */

#include <stdio.h>

#include <fcntl.h> /* for O_RDWR */

#include <ndbm.h>

/* usage: delete database key

 * deletes the given key and associated content

 */

char *progname = "delete";

static char *systemError();

int main(

 int argc, char *argv[]

)

{

 DBM *theDBM;

 /* save the program name for error reporting */

 progname = strrchr(argv[0], '/');

 if (progname) {

 progname++; /* step over the / */

 } else {

 progname = argv[0];

 }

 if (argc != 3) {

 fprintf(stderr, "%s: usage: %s dbmfile key value\n",

 progname, progname

);

 exit(1);

 }

 theDBM = dbm_open(argv[1], O_RDWR, 0);

 if (!theDBM) {

 fprintf(stderr,

"%s: failed to open database %s for writing: %s\n",

 progname, argv[1], systemError()

);

 }

 {

 datum theKey;

 int status;

 theKey.dptr = argv[2];

 theKey.dsize = strlen(argv[2]) + 1; /* include the \0 */

 (void) dbm_delete(theDBM, theKey);

 /* although dbm_delete returns a value, it does not

 * distinguish between the cases where a delete failed,

 * or the item was not there.

 */

 dbm_close(theDBM);

 }

 exit(0);

}

static char *systemError()

{

 return strerror(errno);

}

Compile delete.c in the same way as before, and run it:

$./delete cities Paris
$./fetch cities "Paris"

fetch: key Paris not found

$

Reading All Values

You can dump out all the values in a database with the following program:

#include <errno.h>

#include <string.h> /* strings.h on some systems */

#include <stdio.h>

#include <fcntl.h> /* for O_RDONLY */

#include <ndbm.h>

/* usage: printall database

 * prints all keys and values in the database

 */

char *progname = "printall";

static char *systemError();

int main(

 int argc, char *argv[]

)

{

 int createmodes = 0; /* value not used */

 DBM *theDBM;

 /* save the program name for error reporting */

 progname = strrchr(argv[0], '/');

 if (progname) {

 progname++; /* step over the / */

 } else {

 progname = argv[0];

 }

 if (argc != 2) {

 fprintf(stderr, "%s: usage: %s dbmfile\n",

 progname, progname

);

 exit(1);

 }

 theDBM = dbm_open(argv[1], O_RDONLY, createmodes);

 if (!theDBM) {

 fprintf(stderr, "%s: failed to open database %s: %s\n",

 progname, argv[1], systemError()

);

 exit(1);

 }

 /* print all values */

 {

 datum theKey;

 datum theContent;

 int status;

 for (theKey = dbm_firstkey(theDBM);

 theKey.dptr != NULL;

 theKey = dbm_nextkey(theDBM)

) {

 theContent = dbm_fetch(theDBM, theKey);

 if (theContent.dptr == NULL) { /* not found */

 fprintf(stderr,

 "%s: internal error: key %s not found\n",

 progname, theKey.dptr

);

 exit(1);

 }

 if (theContent.dsize == 0) {

 /* found but had zero length, or

 * in some implementations, not found

 */

 fprintf(stderr, "%s: key %s empty\n",

 progname, theKey.dptr

);

 } else {

 printf("[%d] %*.*s\t%*.*s\n",

 theKey.dsize,

 theKey.dsize,

 theKey.dsize,

 theKey.dptr,

 theContent.dsize, theContent.dsize,

 theContent.dptr

);

 }

 }

 dbm_close(theDBM);

 /* NOTE: dbm)close() is declaerd as having no

 * return value, even thouh the close could potentially

 * fail if the disk was full. The Berkeley db

 * interace corrects this.

 */

 }

 exit(0);

}

static char *systemError()

{

 return strerror(errno);

}

Compile this and run it:

$ cc -o printall printall.c -ldbm
$./printall cities

[14] Godmanchester nothing ever happens in Godmanchester

[10] Cambridge Lots of twiddly bits here

[6] Paris Ah to be in Paris in the Springtime

[8] Toronto Where I live.

[7] Mumbai Where the sewers don't all have lids

The number in brackets is the length of the key, so that you can see if there are hidden spaces. A more general design would just print out the keys one per line, and then you could get the values like this:

$ printall cities | xargs -n 1 fetch cities # does not work as written

There are lots of other possibilities, but the examples are really just so you can get started. For a small number of values (less than 100, say), you could use Unix file names instead, but after that performance often suffers, whereas dbm remains fast even for millions of entries.

Performance

How fast is fast?

A sample program that called dbm_store() in a loop managed to store a little over 10,000 items a minute on a low-end Pentium-based system (233 MHz) with 16 MBytes of RAM under FreeBSD with the db library. The sdbm library is generally a lot faster, storing 10,000 items in 17 seconds on the same system, but this is still pretty fast for most purposes. A Sun SPARC Server running Solaris 2.6 took 0.56 seconds for the same task, and stored 100,000 items in under a minute, using the ndbm library supplied with the system; the resulting file for the 10,000 item test was a little over a megabyte.

Because ndbm has to copy data repeatedly as a database grows, insertion time suffers from occasional hiccups; the result is that the average insertion time increases logarithmically with database size. You can ameliorate this greatly using the native db interface, because you can then specify an anticipated database size and avoid unnecessary copying. The following chart shows times measured with the sample program for database sizes FROM at 10,000 UP TO 320,00 items. Keys were the integers as ASCII strings, values "testing with 21"; The largest database, with 320,000 items, listed at 66 megabytes, but, because not all pages were used, actually occupied only 19 megabytes.

NOTE:

Confusingly, the documentation for ndbm is found on the manual page for dbm_clearerr on Solaris 2; man -k dbm is usually a good way to find it both on Solaris and elsewhere.

[image: image1.wmf]0

20

40

60

80

100

120

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

real

user

system

Here is the sample program:

#include <errno.h>

#include <string.h> /* strings.h on some systems */

#include <stdio.h>

#include <fcntl.h> /* for O_RDWR */

#define EXTCONST /* may need this if you use the sdbm built with perl */

#include <sdbm.h>

/* usage: ./speed database n value

 * saves the given value n times, so you can measure

 * how long it took.

 */

char *progname = "speed";

static char *systemError();

int main(

 int argc, char *argv[]

)

{

 int createmodes = 0644;

 DBM *theDBM;

 int max;

 /* save the program name for error reporting */

 progname = strrchr(argv[0], '/');

 if (progname) {

 progname++; /* step over the / */

 } else {

 progname = argv[0];

 }

 if (argc != 4) {

 fprintf(stderr, "%s: usage: %s sdbmfile key value\n",

 progname, progname

);

 exit(1);

 }

 theDBM = sdbm_open(argv[1], O_RDWR|O_CREAT, createmodes);

 if (!theDBM) {

 fprintf(stderr, "%s: failed to open database %s: %s\n",

 progname, argv[1], systemError()

);

 }

 max = atoi(argv[2]);

 if (max <= 0) {

 fprintf(stderr, "%s; n must be anumber greater thann 0, not %s",

 progname, argv[2]

);

 exit(1);

 }

 /* store the value, or try to: */

 {

 datum theKey;

 datum theContent;

 int status;

 char number[40];

 int n;

 theContent.dptr = argv[3];

 theContent.dsize = strlen(argv[3]);

 for (n = 0; n < max; n++) {

 (void) sprintf(number, "%d", n);

 theKey.dptr = number;

 theKey.dsize = strlen(number) + 1; /* include the \0 */

 status = sdbm_store(theDBM, theKey, theContent, DBM_REPLACE);

 if (status < 0) {

 fprintf(stderr,

 "%s: insert into %s of key %s failed, code %d\n",

 progname, argv[1], theKey.dptr, status

);

 /* not all versions of ndbm let us work out what the

 * error was exactly

 */

 exit(1);

 }

 }

 }

 sdbm_close(theDBM);

 /* NOTE: sdbm)close() is declaerd as having no

 * return value, even thouh the close could potentially

 * fail if the disk was full. The Berkeley db

 * interace corrects this.

 */

 exit(0);

}

static char *systemError()

{

 return strerror(errno);

}

Compile this with

$ cc -o speed speed.c -lsdbm
(assuming that you have sdbm installed) and run it like this:

$ time ./speed-sdbm sdbm 10000 'this is a test with sdbm'

real 0m17.473s

user 0m0.403s

sys 0m1.080s

$ time ./speed sdbm 10000 'this is a test with db .'

real 0m48.467s

user 0m0.363s

sys 0m1.670s

$ ls -l sdbm*
-rw-r--r-- 1 liam liam 1101824 Jan 3 22:17 sdbm.db

-rw-r--r-- 1 liam liam 4096 Jan 3 22:27 sdbm.dir

-rw-r--r-- 1 liam liam 6028288 Jan 3 22:27 sdbm.pag

$

The sdbm.db file is from db, and the other two are from sdbm. You can see how sdbm has been compiled to use larger blocks, and makes a bigger file, but goes much faster. Both of these are going far faster than a relational database would, though, since they are not offering the same guarantees. Note that the sdbm file has "holes" in it: not every block is used. You can check this with ls -s to see how many blocks a file is using; the result might be in 512 byte units, 1024 byte units or something else altogether, so check against a regular file to make sure.

A similar test for retrieval time can use the printall program above. To compile with sdbm, change every dbm_* function to sdbm_, and change ndbm.h to sdbm.h:

$ time ./printall sdbm | wc

 10000 80000 348890

real 0m0.389s

user 0m0.218s

sys 0m0.028s

The output of the wc command shows there were 10,000 lines of output, which is what we expect, since we stored 10,000 (identical items, under 10,000 different keys. The retrieval took about a third of a second (0.389s), which is pretty fast. Using the output in this way is more realistic than retrieving the items and not printing them. With sdbm, results are still good, but not so fast:

$ time ./printall-sdbm sdbm | wc
 10000 80000 348890

real 0m2.231s

user 0m0.314s

sys 0m0.187s

You can configure sdbm to have a different blocksize, and get it to be faster, but in general db is faster at retrieval and sdbm faster at creating and updating the database. If you use the native (non-ndbm) interface to db, you can improve performance considerably.

Using ndbm in Perl

Following the Perl tradition of "There's More Than One Way To Do It" (TMTWWTDI), there are three main ways to use ndbm in Perl. They all involve making a Perl hash be a reflection of an ndbm database.

The first way, used with versions of Perl older than Perl 5, is to use the dbmopen and dbmclose functions:

my %users;

dbmopen %users, "userfile", 0644

 or die "could not open users dbm file: $!";

$users{"liam"} = "Liam Quin"; # save a value

dbmclose %users;

See the Perl documentation for perlfunc:

$ perldoc perlfunc
will show it to you, as will (for a correct installation)

$ man perlfunc
The second way is to use tie to connect (tie together) a hash and a database.

use Fcntl; # for O_RDWR etc.

use NDBM_File;

my %users;

tie(%users, NDBM_File, "userfile", O_RDWR|O_CREAT, 0644);

print $users{liam} . "\n";

untie %users;

The deprecated dbmopen and dbmclose functions shown above are actually implemented in terms of tie and untie.

This second method, using tie, would be the best way to use ndbm but for one problem: the package actually called "ndbm" is not free, but is available only as part of certain commercial versions of Unix, and therefore might not be available. This, of course, is what spawned all of the replacements such as sdbm, in an excellent demonstration of how closed source can lead to market fragmentation. None the less, the need for Perl scripts to work regardless of the ndbm clone available gave rise to the third form, using the AnyDBM_File module.

The AnyDBM_File module looks first for NDBM_File, then for DB_File, GDBM_File, SDBM_File and finally ODBM_File. You can change the order, too:

@AnyDBM_File::ISA = qw(DB_File SDBM_File);

Here is a sample from the documentation of AnyDBM_File that reads an ndbm database and writes it out as a db database:

use POSIX; # for O_CREAT and O_RDWR

use NDBM_File;

use DB_File;

try to open the old database first:

tie(%oldhash, NDBM_File, $old_filename, O_RDONLY, 0) ||

 die "could not open ndbm database $old_filename: $!";

reasonable chance of success, so let's create

the output file:

tie(%newhash, DB_File, $new_filename, O_CREAT|O_RDWR) ||

 die "could not create db file $new_filename: $!";

while (($key, $value) = each %oldhash) {

 $newhash{$key} = $value;

}

untie(%oldhash);

Instead of the loop, you may be tempted to write a simple assignment (as was the author of AnyDBM_File in some versions of the documentation), like this:

%newhash = %oldhash;

This will work fine, but involves having the entire of the old database in memory at once. For a large database, using each is more efficent; see Caveats below.

Whichever of the three methods you use, you always end up with what appears to be, to all intents and purposes, a normal Perl hash object. The exists() and defined() functions both work as normal, as does keys(), but see the next Section, Caveats, for a warning about that.

Caveats

If perl crashes while you are using a database that you have open for writing, the database may be corrupted, and you may need to remove it altogether and start from scratch.

Not all installations of Perl have all the ndbm variants; you should use AnyDBM_File if you want your Perl program to run on other systems. The dbmopen() and dbmclose() functions are deprecated.

You need to check the return value from tie(), because otherwise an error in opening the database will make your program appear to work normally, but simply not save anything! The documentation, including the Programming Perl book, is not always careful to do this in the examples.

Although the normal keys() and values() work as you expect, as does referring to a tied hash in a list context, the resulting array is constructed by loading the entire database into memory. This is inefficient at best, and may fail altogether if the database is larger than the amount of virtual memory available. You should use each to iterate over all keys in a database, like this:

while (($key,$val) = each %users) {

 print "$key => $val\n";

}

Despite all these caveats, ndbm is a very powerful facility, and it is particularly easy to use in Perl.

Versions of ndbm

The later versions of dbm have provided three main kinds of new feature:

1. Freely available source;

2. Better performance, usually through caching;

3. Raising or removing limits, such as those on the sizes of keys and values;

4. Improving the API, including supporting access to more than one open database.

The main variants are described in the following sections, and then summarised in a table of features.

dbm

Perl calls this odbm, presumably for "old dbm". This was the very first version on Unix, and had the deficiency that you could only use one database at a time. The design is also not thread-safe, and dbm is not often used today. It is still included in Solaris 2, if you compile with -I/usr/include/rpcsvs and link with -lnsl, but the manual page tells you not to use it. The dbm library was included in 4.1 BSD Unix in 1981, and quite possibly in Version 7 Unix before that; the source is commercial, and is not publicly available.

As with most later versions, a dbm database generally contains "holes" -- unused blocks that are not allocated. These holes do not take up any space on disk, but if you copy a database with cp or mv, or back it up to tape wit cpio or tar, the holes may suddenly turn into full blocks of zeros in the copy. Some versions of tar have an option to treat blocks of zeroes specially, so as not to make the file use more space when extracted. More importantly, a block of zeroes may be interpreted as an end of tape mark with some broken tape drivers. Such drivers would report an early end of file, and tar would complain about an incomplete file.

The dbm library has a slightly different API from ndbm; see the manual page for it if you have to use it.

ndbm

This was the "new dbm" that appeared in BSD Unix in the early 1980s; it is still commercial, and these days BSD Unix uses the db library (see below) as a freely available replacement. It remains one of the most widely distributed versions of dbm.

There are a number of limitations with ndbm beyond the licence and unavailability of source code:

· Every key-content pair must fit into a single 1024-byte disk block; this renders ndbm unsuitable for storing XML documents, although, as we shall discuss below, it is still useful to us.

· Worse, all key-content pairs that hash together (i.e. have the same 32-bit hash value, which is very rare in practice) must fit into the same block.

· There are no locks: if multiple processes try to access the same database, with one or more trying to write, expect confusion. You can use an external lock file, or open the database with O_RDWR|O_EXCL for exclusive access to try to work around this.

· The ndbm library returns pointers to static data, and hence is not thread-safe.

The ndbm library is used by Sun's Network Information System (NIS, or, informally, Yellow Pages), by most versions of the X Window System to map colour names like red to hex values like #FF0000, and even by the password management system on some versions of BSD Unix. It is very solid and, within its limitations, very robust.

sdbm

The sdbm library is small and fast. It was written in 1989 by Ozan Yigit, then of York University, Toronto, as a publicly available replacement, and it has been very widely ported. It shares the size restrictions of ndbm, but by default uses 4096-byte blocks instead of 1024-byte ones, considerably reducing the likelihood of problems.

The sdbm library is included as part of the Perl distribution, so that Perl always has at least one ndbm-style database available.

The sdbm functions all begin with sdbm_ instead of dbm_, and the include file is <sdbm.h>.

gdbm

This is the GNU version of ndbm. As you might expect, it has many features; one of these is that you can specify the block size when you create the database. Since gdbm copes with items larger than a block, the only reason for changing the block size is to tune the size and performance of the database, but since the entire raison d'être for dbm is performance, this is pretty useful.

You should check the gdbm licence before linking against it; early versions were distributed with the GNU Public Licence (GPL) and not the GNU Library Licence, so that you could only use gdbm if your program was under the GPL. Later versions probably fix this.

The files produced by gdbm do not contain holes, and thus do not use more space when copied with cp or tar.

Although the gdbm functions all begin with gdbm_, there is a dbm compatibility mode for use with old programs.

db

When the BSD team needed a free replacement for ndbm, and were unable to use gdbm because of its licence, they created their own. Ozan Yigit (who had previously written sdbm), Margo Seltzer and later Keith Bostic all worked on it, and produced a library that is fast and flexible, supports a much richer API than ndbm, and yet retains C-level compatibility with it.

Files created with db can be moved between platforms; also, like gdbm files, they do not contain holes, and thus can easily be copied with cp or tar.

There is a btree interface as well as a strict hashing one, and there is even a facility to map text files into arrays of lines. There is a commercial version of the db library available from its authors; they have been adding transaction support and other more traditional database features. The free version, distributed under the BSD licence, is still actively supported.

Like gdbm, the db package does not have limits on the sizes of keys or content.

One of the more interesting features of the db library is that if you pass a NULL pointer (or undef in Perl) as a filename when you open or create a database, the package uses memory instead of a file. This gives you the flexibility to use the same code both on in-memory transient data and on persistent file-based data.
The db library is harder to port to a new version of Unix than most others, but since it has already been ported almost everywhere, this probably won't affect you. FreeBSD installs db by default, as do some of the Linux distributions.

If you want the best performance, use the native interface to db. See the manual entries for db, dbopen and dbhash for more details; the following example may also help.

#include <errno.h>

#include <string.h>

#include <stdio.h>

#include <fcntl.h>

#include <sys/types.h>

#include <limits.h>

#include <db_185.h> /* or db.h */

/* save database key value

 * saves the given key

 */

char *progname = "savelots";

static char *systemError();

int

main(

 int argc, char *argv[]

)

{

 int createmodes = 0644;

 DB *theDB;

 HASHINFO H;

 int N = 0;

 int i;

 DBT theKey;

 DBT theContent;

 char keybuf[40];

 /* save the program name for error reporting */

 progname = strrchr(argv[0], '/');

 if (progname) {

 progname++; /* step over the / */

 } else {

 progname = argv[0];

 }

 if (argc != 4) {

 fprintf(stderr, "%s: usage: %s dbmfile N value\n",

 progname, progname

);

 exit(1);

 }

 N = atoi(argv[2]);

 if (N < 1) {

 fprintf(stderr,

 "%s: 2nd argument must be a number > 0, not \"%s\"\n",

 progname, argv[2]

);

 exit(1);

 }

 H.bsize = 4096;

 H.ffactor = 100; /* max items per block */

 H.nelem = N;

 H.cachesize = 1 * 1024 * 1024; /* 1 MB cache */

 H.hash = 0; /* default */

 H.lorder = 0; /* default */

 theDB = dbopen(argv[1], O_RDWR|O_CREAT, createmodes, DB_HASH, &H);

 if (!theDB) {

 fprintf(stderr, "%s: failed to open database %s: %s\n",

 progname, argv[1], systemError()

);

 }

 theContent.data = argv[3];

 theContent.size = strlen(argv[3]);

 /* store the value, or try to: */

 for (i = 0; i < N; i++) {

 int status;

 (void) sprintf(keybuf, "%d", i);

 theKey.data = keybuf;

 theKey.size = strlen(keybuf) + 1; /* include the \0 */

 status = theDB->put(theDB, &theKey, &theContent, 0);

 switch (status) {

 case -1:

 fprintf(stderr, "%s: insert into %s of key %s failed, code %d\n",

 progname, argv[1], theKey.data, status

);

 exit(1);

 }

 }

 theDB->close(theDB);

 exit(0);

}

static char *

systemError()

{

 return strerror(errno);

}

The code is very similar to earlier examples, except that you have to use the returned DB structure to get at the various functions.

This sample code runs between 20 and 100 times faster than the same library in ndbm emulation mode; one may conclude that the ndbm emulation mode is poorly implemented, but in fact it simply appears to use defaults that, for most databases, will involve a lot of copying of data.

Others

There are several other ndbm-compatible libraries, although they seem to be used only rarely now. One of the more common was dbz, which had the smallest database files but was slowest.

Summary of Features

The following table is based on part of the Perl AnyDB documentation, with changes and additions by Liam Quin, and summarises the features of some of the more common ndbm variants.

odbm
ndbm
sdbm
gdbm
db

Often included with Unix
yes
yes[0] no
no
no

Ported to non-Unix systems
N/A
N/A
yes
yes
?

Code Size
small
small
small
big
big

Database Size
?
?
small
big?
ok[1]

Speed
ok
ok
fast
ok
fast

Licensing restrictions
yes
yes
no
yes
no

Freely available source
no
no
yes
yes
yes

Files contain holes
yes
yes
yes
no
no

Size limits
1k
4k
1k[3]
none
none

Run-time control over block size
no
no
no
yes
yes

Byte-order independent files
no
no
no
no
yes

Notes:

[0] On mixed universe machines, dbm and ndbm may be in the bsd compatability library, which is often shunned.

[1] The code size can be trimmed if you compile for one access method. In any case, since db is generally configured as a shared library and used by other applications, this may not be an issue.

[2] See DB_File. Requires symbolic links.

[3] By default, but can be redefined.

The ndbm Library and XML

If you have read this far, you probably have lots of ideas about how to make use of the ndbm-style packages with XML documents. Here are some samples.

Cross References

Suppose you have cross-reference markup like this:

See <xref what="chapter" idref="chap12" />

You would like to present this to a user on a screen or paper as See Chapter Twelve, "Running Barefoot Is Healthier", but the individual chapters are stored in separate files.

The trick is to write a program -- perhaps a Perl script -- that reads all of the chapters and builds a dbm database in which the keys are the XML IDs and the values are the corresponding chapter titles. You then write another script that reads a single chapter, replacing the above markup with something like this:

See <xref what="chapter"

 idref="chap12">Running Barefoot Is Healthier</xref>

With a little care, you can make it so that the script will replace any content that's already there in the xref element, so that the same script can be run repeatedly on the same input, for when the chapter title changes.

Keeping the information in a dbm database is especially convenient for large documents, where you may have tens or hundreds of thousands of cross-references. It's tempting to use a relational database to keep track of them, but remember that the XML documents may be authoritative. The throw-away dbm file doesn't create a future integrity problem when data is changed in one place but not the other, and it's quick enough to create that nobody minds.

Links Between Files

We will see in Chapter 15 an example of reading a glossary into memory and creating a small web site from it. We will need to keep track of the filename we used for each glossary entry, so that we can generate cross-references not from explicit markup, but from terms used in the body of the glossary. Keeping a mapping between titles and filenames can make that process considerably easier. The mapping is built up as HTML files are generated, and a second pass retrofits the links.

In fact, the production code keeps all the information in an in-memory Perl hash table, but the program takes quite a few seconds to run; moving the hash to dbm might make it fast enough to generate HTML on the fly when it's requested. That in turn makes it easier to support per-user "themes", generating the same content in different styles.

Summary

This chapter introduced a very fast, persistent hash-based lookup mechanism. It's not as robust as a regular database by far, but it is ideal for applications where fast retrieval is needed on small pieces of slowly-changing information.

This chapter contained a lot of detail about ndbm, mostly because other books on XML and on databases don't seem to cover it. It's one of those tools that can make a small job possible in a short time, and well worth knowing about.

In the next chapter, we'll go one step further away from relational databases, and look at text retrieval systems.

Further Reading

Donald Knuth's The Art of Computer Programming, Volume 3, Sorting and Searching, talks about dynamic hashing from a theoretical viewpoint.

Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman (informally known as the Dragon Book because of the cover illustration) gives a practical guide to hashing in general.

The Unix manual pages for ndbm, dbm, sdbm, gdbm and friends are useful.

The Perl documentation for AnyDBM_File, available by running perldoc AnyDBM_FILE, and the other related modules SDBM_File and so forth, contains examples and more notes.

The Berkeley db package has some associated papers describing both the technology and how to use it; look in /usr/doc on a BSD system, or in the doc directory of the package.

� EMBED MSGraph.Chart.8 \s ���

[image: image2.wmf]0

20

40

60

80

100

120

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

real

user

system

_1008491661

