Chapter 13

Text Retrieval Technology Overview

This chapter is intended to give an overview to what a text retrieval system can do, when you might want one, and how they work. It may also help you if you want to implement one yourself, which is a lot of fun, but also a lot of work. The popularity World Wide Web search pages is a good indication of how text retrieval systems can provide a significant value to almost any document-oriented system.

What Is Text Retrieval?

Text Retrieval is a subset of Information Retrieval in which an index is generated automatically to assist in finding pieces of text at some later time. A well-known example of a text retrieval system is that used by Alta Vista to let people search for documents on the World Wide Web.

In general, information retrieval is a difficult and poorly understood field. The main goal is to find information automatically; that is, to answer a user's request. For example, a user might need to find bed and breakfast accommodation in the Wirral, England, or might be scanning the Wall Street Journal for 1937 looking for bankruptcies in the footwear industry. A user might also be interested in pictures of Milan Cathedral, a film demonstrating how to shave safely, or the smell of a grassy meadow after a fresh rainfall, but these are beyond the scope of a book on XML.

The main difficulty facing textual information retrieval software is that the computer has no understanding of the actual information it stores. This is central to all retrieval applications. Since the computer does not understand the text, either the text must be categorised by human researchers, or brute force and ignorance must be applied.

The following Sections discuss various ways to categorise documents -- we shall return to this topic in more detail in Part V of this book, Links and metadata. Back in this Chapter, we then move on to discussing the Brute Force methods which have served Alta Vista and others so well.

Categorising Documents

It is possible to mark each document in a collection with one or more keywords or phrases that identify the broad topic of discourse in that document. The topics are generally arranged in a hierarchy of increasing specialisation, such as Clothing, Clothing/Footwear and Clothing/Footwear/Socks. There are standardised hierarchies of topics created so that people can search across collections created by different organisations. Most people are familiar with the Dewey Decimal schemes used in many libraries. For a private collection, a domain-specific hierarchy may be more effective.

Unfortunately, there are several difficulties with marking text by category.

It must be done by hand. If we could do it automatically by computer, we wouldn't need to do it at all (except as an optimisation) because we wouldn't have the problem any more. Classification is costly and slow, because a specialist must read the text and decide where to place it. It is also very valuable (vide Yahoo, http://www.yahoo.com/).

A single text may be in multiple categories; different parts of a long text may be about entirely unrelated topics. Consider the Encyclopaedia Britannica entry for Canada, which includes sections on history, geography, economics, geology, anthropology and possibly Beer. Splitting long texts into sequences of smaller texts can help here; chapters or sections often form cohesive units for the purpose.

The list of categories is determined by the experts, not by the users when they make a search. If you are looking for books on fly-fishing, but have to trawl through all of Sporting, Hunting, Water Activities, the categories helped very little. Worse, if you later discover that fly-fishing was listed under String and Twine, the categories actively hindered your search.

There are already very extensive categorisation schemes for published information; the Dewey Decimal system mentioned above is probably the best known. Even here there can be surprises, as everyone can attest who has visited a library looking for a book on the Web or on word processing only to find it along with other Information Technology books under "Mathematics and Numerical Systems".

An electronic categorisation system has a large advantage over one for purely physical objects: it's easy for a digital object to appear in more than one place in a hierarchy. If you're not sure where to put The Lord of the Rings, you can put it under both Adult and Teen Fiction, as well as under Jewellery.

Automatic classification of text is an active research area, but has not yet reached a point where it can be used reliably; see the Further Reading section for some pointers if you are interested.

Uncategorised Information

Since classification is difficult, it is common for an information retrieval system to have to deal with a large mass of heterogeneous data with no classification information available. Since the computer has no real understanding of the information, we use cruder techniques, of which the most common is to say, "which documents contain the same words as the query?".

Of course, if you are looking for the famous paper by Canary and Green on algebraic topology, but you can't quite remember the title, searching the World Wide Web for "Green and Canary" is not at all what you need to do! You will need to find a more specific database that indexes only mathematics. If only web pages had an author element, you could search for papers by those two authors. This sort of embedded metadata is the subject of Part V of this Book.

In the absence of useful metadata, an information retrieval system will generally compare the words in the query with those in each document, and return the documents that contain those words the most often. This can be refined -- for example, using a thesaurus to find money when coins are mentioned -- but in essence all they do is compare words.

This approach gets less useful for a more specialised collection of information, because more documents will share a common vocabulary. Technical or specialised information is probably best searched with phrase-aware systems, described in the next Section.

Queries

The search entered by a user is termed a query. The sorts of query you need to handle will play a large part in determining how to implement the actual search engine.

There are several possible types of basic query, some of which are described in the following sections:

Character search

This is where we search for all documents containing a (typically user-supplied) string of literal characters. As a bonus, we might offer case sensitive and case insensitive searching. Some systems* also support "hypercase" searching in which lower case letters in the query match any case in the documents, but upper case letters in the query match only upper case letters.

* Including the author's lq-text system, first released in 1989.

With a character search, the query to be or not to be does not retrieve any of Shakespeare's plays, since this exact phrase does not occur (it's usually written "To be, or not to be", with commas and an upper case letter "T" at the start). Worse, it might not all be on one line in the ASCII or XML document that stores it, and the space in the query would fail to match the newline in the input. Obviously a good search engine should do better than this, once the authors perceive the problem.

You can implement a character search with Unix grep, but this is likely to be slow if you have lots of files or a large amount of data. People tend to get impatient after only a couple of seconds, so an index is generally used. You can store n-grams in an index to speed up a character search: store every occurrence of "t" followed by "h" followed by "e" in a list; another list stores every occurrence of "h" followed by "e" followed by space. A search for "the" against that index will find "weather" as well as "theory". You can then filter out the matches you don't want before presenting them to the user. Of course, people don't often search for "the", and a more plausible search such as "ankle" involves intersecting the index entries for "ank", "nkl" and "kle". If you include a token for a word boundary, \b say, you can also include "\ban" and "le\b" to ignore "ankles" and "thankless", should that be desired. Probably it isn't. You can handle query expansion, letting foot match "feet", by searching for both words and merging the results, of course.

Regular Expressions

If we allow regular expressions (or patterns, if you will) in queries, life becomes a little more interesting; the intrepid researcher can try "to[\n]+be[, \n]+or[\n]+not[\n]+to[\n]+be" to match our famous example. Most regular expression implementations are line-oriented, although in the XML world it makes more sense to be element-oriented, with ^ and $ matching beginning and end of container, as implemented in some commercial SGML and XML software. The publicly available sgrep utility is useful here, as is Perl.

Regular expression syntax isn't for everyone. More importantly, searching for She walked with a weary foot won't work if you misremember it as She walks with weary feet, unless you are extraordinarily careful with your regular expressions!

On the other hand, a search engine that supports wildcards or full regular expressions is likely to be appreciated by the more sophisticated users. Since these tend also to be both the most demanding users and the people with the most complex needs, it's worth considering carefully.

One problem with many open source projects is that the design is done by programmers, who might not always be the intended user of the system. A programmer is usually willing to tolerate a very complex environment to use in exchange for extra power; someone not interested in the computer technology probably doesn't want anything that doesn't obviously and immediately help in getting a job done.

Word Sequences

If the user's query is treated as a sequence of words, with the software taking care of white space, we will find more of the documents we are seeking; in the terminology of Salton et. al. (see the Further Reading section) recall is higher.

Once we treat a query as a sequence of words, we become free to consider changing the words, allowing "sock" to retrieve "socks" and "foot" to retrieve "feet". The more we expand the query to include other word forms, the more results we will get, but we will start to find things the user didn't want or expect. In the jargon of text retrieval research, precision is lower.

Given a query such as "Ealing Green", we might more easily be able to retrieve all documents that contain either word, anywhere in the document, perhaps sorting the results so that documents that contain lots of Ealings or Broadways or both will appear first. This gives us appallingly bad precision, since humans naturally read juxtaposition of words in a query as implying sequence. None the less, the information retrieval community appears to have been slow to embrace the idea of searching based on phrases.

In informal experiments, the present author found that allowing word order to be significant in queries gave a great increase in user satisfaction; sometimes that's almost as important as getting the right answer, and if you can do both at once, you win. It's particularly useful with technical information, but if you watch MetaSpy or the other web query engine monitors, or log referrers to your web site, you quickly see that a lot of people search for phrases. People want to do this, so don't stop them.

One way to implement a phrase-aware search engine is to make an inverted index of all the words in all the data, and, for each occurrence, remember where it was. You might, for example, store the fact that "banana" occurred as the 3,127th word in a particular document. If someone searches for "banana republic", you'll look in the index of all the bananas, compare it to the index of all republics, and look for a pair with adjacent word numbers in the same file. The need to store word numbers (or byte offsets, but that's even more data) means that the index is larger, and creating the index is a little slower; this may be one reason why many systems don't do it.

Algebraic Queries

It is possible to define a little language (in the sense used by Jon Bentley in his Programming Pearls books) for expressing a search. For example, one might say find all documents containing the word elephant but not containing the word custard near the word banana. One has to be careful to avoid surprises; there are systems in which the query to be or not to be is taken as such a Boolean expression and returns all of the documents in the database being searched!

Regular expressions are themselves a little language, of course; many systems use more than one little language, although it is a significant benefit to users if those languages can share concepts wherever possible.

This approach is particularly suited to sophisticated users, and is easily extensible to cover XML-specific searching. Here are some simple examples that various products use:

"1976" within <PartNo>

Find all occurences of 1976 within a PartNo element; this, for many, is the be-all and end-al of XML-aware searching. You could implement this with a hybrid system consisting of a text retrieval engine and a representation of structure, as we shall see in Chapter 15.

("Bethnel Green" AND "married") NEAR "elope"

Such Boolean expressions can use a lot of memory to implement, if you end up reading all of the matches for all three words and then combining them. An optimisation is to store the matches for each word in sorted order, so that you can apply the expression as you read the matches off the disk. This may also let you deliver the first few matches immediately, unless you sort the results by "quality" or "ranking".

<Para ID="j30015">

This requires storing attribute values (which are case sensitive in XML); one way would be to store them as words along with the main text in the database.

Query Expansion

When users are unfamiliar with the contents of the archive being searched, or when the search is more general than looking for a specific word or phrase, it's useful to have the information retrieval system search for more than the user requested. One might then use ranking to try to sort the results so that the most likely documents or matches appear near the start of the list.

Two ways to expand the search are to use stemming, in which words with a common prefix, or derived from a common etymological or grammatical root, are considered equivalent, and using a thesaurus to search for allwords of similar meaning to those in the query.

Stemming

In early information retrieval systems, Stemming involved simply removing the ends of the words to get a stem, or root, so that walked, walking and walker would all be found by looking for walk, and fly, flier and fling would (less happily) go together. Several researchers have reported improvements on the original full Porter stemming, although most changes seem to lead to improved computational efficiency rather than to improved results. Stemming generally reduces precision, but improves recall: you are more likely to find things, but you are also more likely to find things you didn't expect. Since most retrieval systems do not have any way to determine actual parts of speech, all words that end in -sses, -os and so on are likely to be considered to be plurals, so that SunOS and Jesus are thought plural. With broader systems the town of Dorking is full of people who Dork a lot. Hence, any search for Jesu finds Jesus (probably acceptable) and any search for dork finds Dorking (probably a little surprising).

Automatic part-of-speech detection can help to reduce false hits, for example by deducing that Dorking is a noun and hence not conflating it with the (putative) verb to *dork. Such detection tends to be computationally expensive. Accuracy can be over 85% with probabilistic models but unfortunately the words that it fails on may be exactly the ones that are unusual, and that people are more likely to include in their queries.

Experiments with semantic nets such as the publicly available wordnet package are promising but still in early stages. They generally analyse the query to determine part-of-speech information, and try to do the same to the indexed text.

Term Replacement and Thesauri

Another way of improving searches is to use some kind of thesaurus, so that a search for coins can also find documents containing money. This improves recall, finding more of the documents in the database that might be relevant to the query, but reduces precision, forming a blunt instrument that retrieves many irrelevant documents. Worse, the user might have no way of knowing why a particular document was retrieved, which can be very bewildering.

There is a public domain thesaurus available from Project Gutenberg, another from the WordNet project. A number of commercial systems use some kind of thesaurus.

Automatic thesaurus generation, in which the text is scanned for words that are commonly used together, is sometimes helpful. One way to do this is to look for phrases that differ by a single word, so that if one sees to milk dry and to suck dry, one knows that to milk can sometimes mean to suck. More sophisticated algorithms are more discriminating, of course. Unfortunately, automatic thesaurus generation generally involves going to a lot of trouble for a very small improvement in search quality.

With XML documents, one could use a per-element-type thesaurus, so that the contents of <PlaceName>, <Description> and <Keywords> could all be treated differently. This becomes much more important for multilingual documents, too. The author once worked with some people making dictionaries; they spent an entire week running a spell check, carefully pressing ignore for each fragment of pronunciation or etymology. A context-sensitive checker would have saved them several days each time.

Similarity and Feedback

The late Gerald Salton of Cornell University described an idea called document similarity in which one decides that two documents are similar to each other if they have a lot of words in common. The words are weighted by their expected frequency to derive a numerical distance vector. A user can give relevance feedback to the information retrieval system by choosing one or more documents and saying, "find other documents like this one".

Similarity algorithms work best on collections that have varied subjects (so that there are documents with widely differing vocabularies) and that tend to be entirely about a single topic. Variations include per-paragraph similarity and using phases instead of words, both of which can give dramatic improvements in some cases.

Few users are willing to take the time to say, "I liked this document, get more like it", which limits the effectiveness of this technique.

Multiple Languages

There are two situations to discuss here. Firstly, a heterogeneous collection of documents, with some documents in Urdu and some in Welsh (say), or multilingual documents, with multiple languages within the same document. Secondly the issue of users whose first language is not the same as that of the document collection.

Both of these are relevant to XML; the second is especially important with distributed or web-based applications.

Heterogeneous Collections

Some systems can search across documents in multiple languages by translating the query into the appropriate word or words for each language as appropriate. This seems to work best in specific domains, such as Bible search software.

Searching multiple languages involves many sub-issues, some of which can be very specialised. Stemming is a particularly difficult one; even determining word boundaries is difficult in some languages, such as Japanese. This is not likely to be a feature that is easy to add to an existing system, especially if it means changing the internal representation of queries to allow for on-the-fly translation.

A major issue for XML documents is the handling of special characters, whether they are marked up using character references, elements, entities, or inserted as Unicode or other special characters. In Quebec, accents are retained in upper-case French words, but in France they are generally dropped; one also has to handle accented characters and ligatures that may occur in foreign phrases quoted in English vres. Accented characters are generally best ignored in searches unless linguistic processing is performed, but this does not mean deleting accented characters from queries! On the other hand, é should certainly not be treated as a word division by the indexing or searching software.

Unicode and wide character support is an important issue, particularly as XML mandates Unicode support.

Multiple Locales

The second multilingual situation is where the users speak different languages, so that an internationalised interface must be presented. Furthermore, translations of summaries or entire documents may be made available. In such an environment, there must be a way to indicate the language of a query, and the list of results should show the language of each document.

Implementation Issues

Before you decide to write your own text retrieval engine, look at both the freely available systems and the commercial packages; there are some pointers to get you started in the Resource Guide.

If you do decide to write your own, you should consider starting with one of the existing free packages, to save work. The author's own lq-text system has been distributed as open source since 1989, for example. The following sections describe some possible components you can use, to make some of the issues clearer.

Making an Index

In order to provide reasonable response time, you'll generally want to build some sort of persistent index that you can read off disk. The Further Reading section at the end of this chapter gives some pointers to literature describing different sorts of index, so we'll only discuss three main variants here.

1. Signatures

For each block of input, make a hash of all the words. For example:

for each input document d
 hashes[d] <- 0;

 for each word w in d
 hashes[d] |= hash(w); // i.e. bitwise or

To see if a given document contains the word ankle, first compute the hash of ankle, and then see if all of the bits in the word's hash are set in the document's hash:

searchfor(word)

 hw <- hash(word);

 for each document d
 if ((hashes[d] & hw) == hw)

 retrieve d
This algorithm will retrieve documents that do not contain the word w sometimes, if it should happen that some other words have set all the bits in the word's hash. You may therefore need to scan the documents later.

2. Inverted Index

Building an inverted index is described in the author's lq-text paper (see Further Reading), and in most books on text retrieval. Here's a simple algorithm.

Read the input and split it into words

For each input word w,

 reduce w to its root

 (e.g. turn "feet" to "foot", "running" to "run")

 print

 the word root,

 the document number

 the word number within the document

This produces a stream like this:

this 1 1

produces 1 2

a 1 3

stream 1 4

and so on.

You can then sort that output first by the word and then, for lines in which the words are the same, by document number numerically and finally by word number numerically.

Join all of the occurrences of each word together:

a 1 3 19 27; 2 205 211 291 . . .

aaron 5 1792 1983

barefoot 1 271962 271978 272011

You can see that you could save space by storing the first entry for each file, and then the increment since the previous value:

a 1 3 16 8; 2 205 5 80

aaron 5 1792 191

barefoot 1 271962 16 33

In practice this saves considerably more space than the example might suggest.

A file like this will be quite large; perhaps larger than your original data, and it can't easily be updated without rewriting it. The next step is a binary representation.

STAIRS, the first text retrieval system, put the matches for each word in a separate file. To make the resulting mind-bogglingly large directory manageable, they used a separate directory for each two-letter prefix. Under this scheme, the example words above would be stored under "a/a", "aa/aaron" and "ba/barefoot" respectively.

Measurements show that each word occurs, on average, approximately 10 times, in most bodies of text. The most popular 10 words generally account for over 25% of all the occurrences of all the words. As a result, storing matches in files will generate a lot of small files. A database starts to look inviting, but remember that the average word is only six characters long, including a space and the occasional piece of punctuation. If your database uses 4 bytes to store an integer, and you are storing word number, document number and a word identifier to tie the relation together, you're storing twelve bytes. Add the overhead of the database block structure and B-tree index, and this approach usually ends up using between three and ten times the storage space of the original documents. One implementation the author has seen was noticeably slower than grep on fast SCSI disks.

If you read the previous Chapter, you're probably contemplating using dbm to store the matches for each word. You could do that with the BSD db package, but most others have relatively small limits on what you can store under a single key.

The compromise used in lq-text is to use dbm to map from a word to a unique number; this number is used as an offset into a file of 32-byte fixed-sized records. A larger file is used to store overflows from the 32-byte records.

A further optimisation is to store numbers in binary, using arithmetic encoding. For convenience and efficiency, lq-text uses an 8-bit encoding, in which the number is encoded in the least significant seven bits of each byte, and the top bit is used to indicate that another byte of value follows. This is shown in the table:

Number
Storage

0 - 127
1 byte, value 0 - 127

128 - 16383
2 bytes, the first also having the top bit set

16384 - 2097151
3 bytes, the first two also having the top bit set

2097152 - 268435455
4 bytes, the first three with the top bit set

268435456 - 4294967295
5 bytes, the first four having the top bit set

The use of delta coding for sequences, in which you store the difference from the previous value, works particularly well in conjunction with variable-byte storage of numbers, because most numbers then end up stored in a single byte. The result is that lq-text manages to store the following information for each match in an average of three bytes:

Field
Description

FID
File Identifier: a unique number for each document.

Block
Block in File, or Structure Pointer, described in text below

WIB
Word In Block, starting at zero. Refers to natural language words, not machine words.

Flags
Various flags for this word, including PLURAL, POSSESSIVE, NUMBER

PrevFlags
Flags for the space between this word and the previous, including PUNCTUATION, EXTRA_SPACE, SKIPPED_COMMON

NextFlags
The PrevFlags value for the next word that was seen in the input

Distance
The distance between this word and the previous, to a maximum of 15

The matches are stored in sorted order first by FID, then by Block, then by Word In Block. Furthermore, a sequence of matches for the same file are preceded by a count, to avoid repeating the FID. The Flags and Distance are stored together in a single byte, but if that byte has the same value as the byte for the previous match in the sequence, a single bit is set in the Block to indicate that it is not stored.

The input is normally divided into arbitrary blocks; these are 4096 bytes long by default, but for indexing SGML or XML it's logical to use a different Block number for each piece of Text Content. You would then need some way to map that Block Number, or Structure Identifier if you will, into an element path, so as to be able to handle XML-sensitive queries.

Another way to handle XML queries is to treat <Name and </Name as words in the index. For many sorts of documents this will work fine; the most likely problem is one of performance. A secondary problem is searching attributes; perhaps adding an IN_ATTRIBUTE flag might help, along with using a special syntax for attribute names, such as <<Name or <Element.AttributeName.

Another practical issue is users who want to say, Find boy inside a section title. If you have multiple document types, this may involve searching H1, H2 and H3 in one set of documents, Title directly within Section in another, and T in a third set. Worst, the first set might use a T element to mean something entirely different.

One approach to this problem is to provide a "Virtual Document Type", and map the elements in each actual document onto that virtual DTD. Technical solutions to this vary from Architectural Forms (which require modifying each DTD) to external text files or database entries.

Whether users search a single actual document type or a virtual one, or multiple disparate ones, a user interface giving a pick-list of elements along with a brief description of each is clearly worthwhile. Most users fall into the category of people whom Alan Cooper calls perpetual intermediates, users who never become experts.

Phrase-level elements such as emphasis are generally <emph>in</emph>significant: they don't cause a word break. The same goes for entities such as é of course. On the other hand, one may well want to search for inline phrase-level elements such as PlaceName, ArtGallery or Date.

Presenting the Results

You need to give users enough information to let them decide which documents to view, or whether to try a new query altogether. One way is to provide a document title; more technical researchers, or people more familiar with the data, may want to see a few words either side of each match.

In either case, the results should be sorted. If there is a single logical order in which people expect to see documents, such as by date for email, you can index the documents in the right order and hence avoid sorting results when the query is run. Other common sorting orders include Statistical and Boolean Rank. A third technique, Similarity, is closely related to Statistical Ranking.

Statistical Ranking

For each document d, count the number of times each query-word occurs in d, and divide that by the size of d.

Compare that to the frequency of the word in the collection as a whole, divided by the collection size.

If the word occurs unusually often in d, rank d nearer the start of the list.

This algorithm does not work well for words that occur much less than once per document on average, because a single rare word in a query will cause all other words in the query to be (in effect) ignored.

Boolean Ranking

If the user's query is "uncontrolled laughter", a Boolean system might treat the query as, find all documents containing the word "uncontrolled" and also containing the word "laughter". Since it's clearly better to find the two words when they are adjacent, as a phrase, let's consider the query "uncontrolled AND laughter".

The most effective approach to sorting results is generally to list first all documents containing all of the keywords in the query, then those containing all but one, then all but two, and so on.

Even more effective is to list first those documents that contain the phrase (uncontrolled laughter in this case), then documents containing both words, then other documents.

Document Similarity

You could take an entire document and use it as a query, rank the results using one of the above methods, and say that the top-ranked document was the most "similar" to the starting document. To do this, you need pretty efficient query processing.

You can apply the same reasoning with a query, and ask users to enter a sample paragraph, perhaps using copy and paste from some other source.

The main problem is that if you use a statistical ranking, your query is a very small document, so all the words in it occur more frequently per kilobyte than the average, and the weighting gives odd results back. If you can do a "normal" result, and get the user to select documents they wanted but that weren't quite right, you can use the selected documents to home in on the right one. There is a lot of literature describing this sort of approach (e.g. Salton's SMART system developed by Buckley et. al. at Cornell). In practice most users don't have the patience or interest, and would rather simply repeat their original search with slightly different keywords.

The author has experimented with a similarity ranking that uses the sum of rankings for each sub-phrase in the query; this seems to be good for finding similar passages, but is slow.

Returning Results to a Program

One obvious use for a text retrieval system is to augment some other program. You might have a web page that lets people search a Postgres database, for example, written using PHP. Most queries are best handled with SQL in that case, but queries for natural language phrases could be passed off to an external text retrieval system.

You then have to deal with the question of what exactly to return: a whole document, a list of point locations where there are matches, the smallest containing Section element, and so on. The next chapter takes this question a little further, talking about XML-specific query languages.

Summary

A word-level search is likely to be more generally useful than a character-level one. Text retrieval systems provide a way of searching documents very quickly, turning an O(n) operation into roughly O(1) at the expense of using additional disk storage space. There are freely available text retrieval packages described in the Resource Guide. Some of the code techniques described in this chapter are also useful in other applications.

 In the next Chapter, we look at XML Query Languages in a little more detail.

Further Reading

Alan Cooper, The Essentials of User Interface Design

Liam Quin, lq-text Usenix paper

Salton

Baezel-Yates and Frakes, IR book

Managing Gigabytes

