Chapter 15

Hybrid Approaches

Previous chapters have discussed ways of using XML together with a single type of database. This chapter talks about combining multiple techniques together. Some people seem to want to see everything as an XML document, and others prefer to view the world as being composed of relational tables, or of objects. The real world is not an elegant abstract concept, so it is no surprise that no one of these models solves all needs.

Taking a "toolkit" approach, this chapter gives a number of suggested solutions to problems, and mentions software that is also listed in the Resource Guide at the end of the book.

Files and Databases

The fastest commercial SGML repositories have been around for years longer than XML itself; of these, the fastest store data in flat files. That doesn't make much of a repository, though, so they add other software. One interesting approach is to use a relational database to store metadata such as filename, permissions, author and title, but to keep the actual documents in external files. The files can be accessed with the Network File System (NFS), or through a web server, or with some other (generally proprietary) mechanism.

There are a number of difficulties with this approach, although they can all be surmounted.

The biggest is a Referential Integrity problem, as the database people call it. You have two sets of information that are interrelated, but that can be updated independently. What if I delete a file that's still listed in the database? What if I change the title in the database but don't edit the document? What if I rename a file? What if a file changes while I'm backing up the database, or the database changes while I'm backing up files?

The obvious way to surmount this is to deny users all access to the files except through your software. Write a server that controls all aspects of file management. Where there is derived information stored in the database, make sure that it is only updated by actually reading and parsing a document file.

A second possible problem is that a file system may be less "robust" than a database. Since databases are stored on the same disks used for file systems, this is generally bogus. Back up all of your data daily and weekly, and use a high-quality RAID if the data is important.

A real problem is that if you need to do a lot of structure-based searches on your XML data, you'll end up representing the XML structure in the database and lose the biggest advantage of this strategy: speed. If you are planning to ask for all stores in a certain geographical region containing magazines which in turn contain articles describing socks manufactured in your Aberdeen factory, this isn't the way to go. If you need XML-sensitive searching at all, see the next section, Databases and Text Retrieval, for a solution.

All of this is further complicated by the variation in support for external files in different databases. Some databases (including Oracle 8i) have support for backing up a database and external files together so that no data is lost, but this level of support is the exception rather than the rule.

Another possibility is to use a text management system such as RCS or CVS to store the documents, and keep metadata (of which more in Part Four) in the relational database. If you are not familiar with RCS and CVS, the Revision Control System and Central Versioning System, check them out; they are pretty useful. The author keeps all of his text and configuration files in RCS. The next section explores this in more detail.

Using RCS and a Relational Database

The Revision Control System, RCS, stores text files. Each time you change the file, you "check it in" to RCS; RCS then stores the changes. As a result, the size of an RCS log file grows slowly, and yet RCS can quickly show you the differences between any two versions. The following log shows checking a file out, making changes, and then asking RCS what the changes were:

@

bash-2.03$ mkdir RCS
bash-2.03$ ci -u Morality.html
RCS/Morality.html,v <-- Morality.html

enter description, terminated with single '.' or end of file:

NOTE: This is NOT the log message!

>> a poem by Matthew Arnold
>> .
initial revision: 1.1

done

bash-2.03$ co -l Morality.html
RCS/Morality.html,v --> Morality.html

revision 1.1 (locked)

done

bash-2.03$ (edit the file Morality.html here)
bash-2.03$ rcsdiff -c Morality.html
===

RCS file: RCS/Morality.html,v

retrieving revision 1.1

diff -c -r1.1 Morality.html

*** Morality.html 2000/03/02 21:36:02 1.1

--- Morality.html 2000/03/02 21:45:57

*** 10,15 ****

--- 10,18 ----

 <p>

 We cannot kindle when we will

 The fire that in the heart resides,

+ <!--* http://www.library.utoronto.ca/utel/rp/poems/arnold2b.html

+ * has which instead of that

+ *-->

 The spirit bloweth and is still,

 In mystery our soul abides:

 But tasks in hours of insight will'd

*** 21,28 ****

 We dig and heap, lay stone on stone;

 We bear the burden and the heat

 Of the long day, and wish 'twere done.

! Not till the hours of light return

 All we have built do we discern.

 </p>

--- 24,66 ----

 We dig and heap, lay stone on stone;

 We bear the burden and the heat

 Of the long day, and wish 'twere done.

! Not till the hours of light return,

 All we have built do we discern.

 </p>

bash-2.03$ ci -u Morality.html
RCS/Morality.html,v <-- Morality.html

new revision: 1.2; previous revision: 1.1

enter log message, terminated with single '.' or end of file:

>> added the rest of the verses, fixed a typo,
>> and commented a difference.
>> .
done

The bold lines after prompts are what I typed; I've also shown the changed lines in the diff output in bold. A "+" at the start of a line shows an added line, and a "!" shows a changed line. Had there been any deleted lines, they would have been marked with a "-".

The rcsdiff command can compare any two versions of the file, with the -r option:

rcsdiff -r1.2 -r1.9 Morality.html

It would be fairly easy to write a CGI script, perhaps using PHP, which checked a file into RCS and updated the database. You might keep a simple table like this:

+-----+-----+----+-----------+---------+---------------------------+

|DocID|Owner|Rev |ModDate |File |Title |

+-----+-----+----+-----------+---------+---------------------------+

|104 |james|1.14|2000-03-14 |r419.xml +Book Review: MySQL & mSQL |

+-----+-----+----+-----------+---------+---------------------------+

Your script could extract title and other information from the file each time it's changed, and update the database. You would be able to do title, owner and date searches quickly, and could retrieve any version of any document.

The main reason to put files into the database is to be able to back up your data safely. If the data is external, you may need to shut down the database in order to ensure that no files change during the operation.

The main advantages to having the files external are:

· Database size: most databases have a larger storage overhead than the file system

· Performance: the database may go slowly when there's a lot of stored data.

· External access: you could make a text retrieval index of the files, for example, or do a read-only CVS fetch of a project without having to use the database

A hybrid system that stores files externally and indexes them with a text retrieval package is described in the next Section, but even the ability to use the Unix grep command should not be undervalued.

Databases and Text Retrieval

Most text retrieval systems work with files, not database fields. If you want to provide the most powerful searching possible, you may end up with one of two hybrid solutions: relational databases and text retrieval, or object-oriented database and text retrieval.

Whichever sort of database you are using, the simplest technique is to generate an external file corresponding to each document, and hand the files to the text retrieval package to index. Give the files significant names, perhaps composed of a document number and a revision number. When you use the text retrieval package to search, it will give you a list of filenames that match your query. You can then map these filenames back to internal objects or database rows, carefully checking document access permissions before returning the number of matches and document list to the user.

The author's own lq-text package has been used in this way, as have many commercial packages. At the time of writing there are no open source text retrieval packages that handle XML; if you are interested in working on lq-text, contact the author. Commercial vendors such as Open Text and Verity have support for SGML and/or XML searching. See the Resource Guide for a number of freely available text retrieval packages for plain text.

Here is an example of a result of a query using lq-text; the format is entirely configurable, and is shown here in an SQL-like format:

+---+-----------------------+--------------+---------------------------+

|Doc|Prefix |Match |Postfix |

+---+-----------------------+--------------+---------------------------+

|12 |nal) the ``XForms'' X11|user interface|toolkit. You need to have a|

|12 |on a freely distributed|user interface|toolkit called the XForms L|

|13 |w programming language.|User interface|design. MPI was designed af|

|96 |r PostgreSQL (Graphical|User Interface|) 9. Integrated Development|

|96 |r PostgreSQL (Graphical|User Interface|) PostgreSQL has Tcl/Tk int|

+---+-----------------------+--------------+---------------------------+

+---+--------------------------+---------------+

|Doc|Filename |Location |

+---+--------------------------+---------------+

|12 |PCMCIA-HOWTO |/usr/doc/HOWTO |

|13 |Parallel-Processing-HOWTO |/usr/doc/HOWTO |

|96 |PostgreSQL-HOWTO |/usr/doc/HOWTO |

+---+--------------------------+---------------+

The results are returned as lines of text using the command-line API; alternatives include using the C API to extract individual fields, or using a unique separator string between the fields and then extracting them from text. One way to do this would be to generate XML, and lq-text can already escape tags in several ways. The following example shows a possible XML rendition of the same matches:

<Results>

 <File Name="/usr/doc/HOWTO/PCMCIA-HOWTO">

 <Match>

 <Before>tem before you begin: · A 2.0.*, 2.1.*, or 2.2.* series

kernel source tree. · An appropriate set of module utilities.

(Optional) the ``XForms'' X11 </Before>

 <Text>user interface</Text>

 <After> toolkit. You need to have a complete linux source tree for

your kernel, not just an up-to-date kernel image. The driver

modules</After>

 </Match>

 <Match>

 <Before>module "misc/serial", "serial_cs" This package includes an

X-based card status utility called cardinfo. This utility is based on a

freely distributed</Before>

 <Text>user interface</Text>

 <After> toolkit called the XForms Library. This library is

available as a separate package with most Linux distributions. If you

would li</After>

 </Match>

 </File>

 <File Name="/usr/doc/HOWTO/Parallel-Processing-HOWTO">

 <Match>

 <Before>nd parallel file I/O. Are these things useful? Of course

they are... but learning MPI 2.0 is a lot like learning a complete new

programming language. </Before>

 <match>User interface</match>

 <After> design. MPI was designed after PVM, and clearly learned

from it. MPI offers simpler, more efficient, buffer handling a</After>

 </Match>

 </File>

 <File Name="/usr/doc/HOWTO/PostgreSQL-HOWTO">

 <Match>

 <Before>reater than 200 Gig 7. How can I trust PostgreSQL ?

Regression Test Package builds customer confidence 8. GUI FrontEnd Tool

for PostgreSQL (Graphical </Before>

 <Text>User Interface</Text>

 <After>) 9. Integrated Development Environment Tools for

PostgreSQL (GUI IDE) 10. Interface Drivers for PostgreSQL 10.1 ODBC

Driver</After>

 </Match>

 <Match>

 <Before>ge MAY not be supported by PostgreSQL!! You may need to

verify those and add it to regression package. 8. GUI FrontEnd Tool for

PostgreSQL (Graphical </Before>

 <Text>User Interface</Text>

 <After>) PostgreSQL has Tcl/Tk interface library in the

distribution called 'pgTcl'. Tcl/Tk is a Rapid Application Development

tool and is</After>

 </Match>

 </File>

</Results>

@

To give an idea of how a text retrieval package might be coerced into cooperating in that way, the command used to generate the above list is shown below.

#! /bin/sh

echo "<Results>"

lqphrase "$@"

lqkwic \

 -S '<File Name="${FileName}">\n' \

 -A '</File>\n' \

 -s '<Match>

 <Before>${TextBefore}</Before>

 <Text>${MatchedText}</Text>

 <After>${TextAfter}</After>

 </Match>\n'\

 -f -

echo "</Results>"

The lqkwic program substitutes the ${TextBefore} and other variables given in the -s option for each match, and uses the -S and -A values before and after each group of matches for a given file. Other options (not shown here) support the replacement of XML entities and encoding of < and & in the output. This is a pretty complex example, and the purpose isn't to teach lq-text commands, but to give an idea of how it can be fairly easy to integrate a text retrieval package into other software at the Unix (or NT) shell level.

A fairly current source-code release of lq-text is included on the CD-ROM for you to play with.

Things to Watch For

Not all text retrieval packages can cope with documents that change, unless you build a new index of all document, often a very lengthy process. If this is an issue for you, check first. The lq-text package can "unindex" a file, if you still have the original. Space in the index is made available for reuse, but the index never actually shrinks, so it's a good idea to rebuild it completely once a month or so.

Since most text retrieval databases are unavailable, or give incomplete answers, during rebuilding, you may want to build a new index alongside the old one and then switch. This avoids having a downtime of several hours while a large index is rebuilt. A short shell script can usually do this.

Some packages can handle compressed or gzip'd files, and some can't. Some can handle them at retrieval time but not at indexing time, oddly.

Most text retrieval packages can write a database to a networked drive, but do so very slowly. A factor of ten or more performance loss is not at all unheard of. It's therefore common to run indexing software on the server even if the retrieval is done on a client.

You should always consider a text retrieval package to be a sort of cache: they are not the primary repository for your data, and often don't store the data itself at all. As with all caches, there are consistency problems. One is that the text retrieval package may grant access to information about documents even if the user doing the query should not be able to see the data. This is how the Dead Sea Scrolls were leaked: someone had access to a text retrieval index, and was able to piece the documents together word by word! Another issue is that the text retrieval system might not notice that a document has been changed, and give incorrect results.

When you are choosing (or implementing) a text retrieval system, note that the more documents you have, the more you will value precise and correct answers. Higher precision usually means storing more information, so that more accurate retrieval packages tend to have larger indexes -- often larger than the actual data. If you also need temporary storage to build the index, and enough room for a spare copy of the index while it's being rebuilt, remember to budget for the extra disk space. Usually, the more memory you have, the faster indexing goes, so having extra memory on the server may be useful too.

Using ndbm as a Cache Manager

Relational databases are very slow beasts compared to most other storage technologies: few databases can handle a paltry 100,000 transactions per second even on a Pentium or SPARC system. If you are serving up data from a database onto the web, you may find things are too slow, taking several seconds to send a complete web page. Users will generally wait three seconds or so for a response, but not ten or twenty unless they really need the information.

One way to speed performance is to design your database so that as few SQL JOIN statements are needed as possible. Sometimes performance constraints mean you end up abandoning the Third Normal Form that we mentioned in Chapter 3, Just Enough SQL.

If the database isn't your own, or if you decide that you need to keep the current schema, you could speed things up by keeping a copy of recently accessed documents. This copy is called a cache. Caches are very difficult to implement:

· If the database changes, documents in the cache become incorrect.

· If multiple processes write to the cache at the same time, it may be come corrupt.

· Different users might get different views of the database; the cache must take this into account.

· In a multi-user server environment, the documents in the cache itself must be protected so people can't look at what other users are reading.

· Problems in the database code become hard to debug, because you have to work out whether the document you see was from the cache or was freshly generated. A separate interface that bypasses the cache can help, as can a program to give a detailed table of contents of the cache itself.

The simplest way to implement a cache in the HTTP environment is to cache the generated HTML pages, making sure that the URL of a page is sufficient to generate the page. Some sites use cookies or the HTTP Realm-based authentication described in Chapter 2, and generate user-specific pages for a given URL based on the realm or cookie. Don't do this. Put a session identifier into the URL if you have to, because otherwise the browser's own cache will make debugging early impossible.

Once you've made your URLs unique, you can use Apache's cache, or investigate Squid. There are links to both of these packages in the Resource Guide in the Client/Server section. Figure 15.1 shows this architecture.

Figure 15.1

An External HTTP-Based Cache

If the URL is not sufficient to produce the correct page, you will have to use a different technique. You may want to do this anyway if you build up pages by assembling fragments, because caching the fragments may be more efficient or easier to implement. For example, if a fragment changes, you will know which parts of the cache to delete. Figure 15.2 shows where this cache goes in the architecture. TODO

Figure 15.2

An Internal Cache

If you have lots of very small files, you'll end up with a lot of wasted disk space: each file has to be stored in an integral number of blocks on disk. The size of a disk block varies depending on the type of disk and the operating system. most Unix systems can use disk blocks as small as 512 bytes even on a large disk, whereas Microsoft Windows systems tend to use 16Kbyte or larger blocks. For a million files of 500 bytes each, you've just lost fifteen gigabytes of space.

In a client/server environment, a server can keep track of the latest version of an object, and can often avoid going to the database at all if it's asked for the same object twice. You have to remember to check permissions, of course: even if it's the same user, the database permission table might have been updated.

One way to implement a cache is to use the Berkeley db package (see Chapter 12 for more on ndbm and related packages); this is what at least some versions of Netscape use. You use the URL or document path as a key. The corresponding value might be the data itself, or it might be a structure that describes the data. If you store the data in the db file, you get the benefit of losing less file system space and having faster access, but it's harder to control the size of the cache.

Other Hybrid applications with db
Chapter 15 showed an example called the AutoLinker, which adds hypertext links and annotations to documents on the fly. The example shown used an in-memory database built by reading an XML file, but an alternative is to split the process into two parts. The first part reads the XML file or uses DBI to perform a database query, and saves the results in an ndbm (or db) database. The second part can then be run at any time on any document, without the overhead of having to scan for possible targets. A variation of the AutoLinker described in Chapter 18 uses a text retrieval database to add links to documents in a similar two-stage strategy.

Documents as Objects

A number of XML-based systems use an object-oriented database to store XML, usually representing each element as an individual object. An alternative is to consider an entire document to be an object. The object could be stored externally, on the file system or in a different database, with the object-oriented database holding a "surrogate object" that represents the actual document. This is similar to the approaches described above with relational databases, of course.

Document Management and Work Flow

If you have a team of people working on the same document, it might sound useful to let anyone edit any element. In practice, people usually want to edit a chapter or a section, not just a single emphasis element. This lets you make an optimization and store the "editable objects" as single objects, either internal to the database or externally.

Once someone has edited an object, they may need to get approval from management before it can be published. Clearly this can be automated, perhaps by sending email to the manager concerned as well as storing a "Needs Approval" state for the object.

Document Management and Work Flow are two related subject areas that could fill whole books by themselves. All that can be said here is that although there are few open source content management systems, that is changing. The resource guide has pointers to more, and the web site for this book may list more as and when they appear.

Error handling

This may seem like an odd subject! Error handling is one of the hardest things to do well when creating a hybrid system. Each component will probably report errors in its own way, and you will need to trap the failures and report the detailed system-level information, but also do that in a way that helps the user to diagnose the problem.

One system the author has used issues the error "you may have too many process running" whenever one of the components dumps core or crashes. A better message might be "The program start-revision crashed; it was called from internal task: Copy Configuration To Make New Revision, as part of revising document DZ40196 from revision 4 to revision 5." because at least then the users and staff would have a clue about where to start debugging.

It is worth spending a lot of time on a user interface, because that's all the user sees. The user rarely looks at the code itself. Error handling is an important part of that interface, and a difficult one.

Summary

This has been a short chapter, and yet the ideas here are among the most important in the book. Combining the strengths of two or more systems leads to a stronger one.

It isn't always easy to combine packages: there are issues relating to backup, to integrity, to security and to error reporting. But these issues are worth overconing.

