Chapter 17

Storing Links and Metadata

The previous chapter introduces various ways of representing metadata at a markup level. This chapter is about how to store Metadata in a database, and also about why you'd want to do that. Many of the reasons have already been alluded to earlier in this book; this chapter gathers them all into one place, and gives you suggestions for how to implement them.

The next chapter, the last of the main text of the book itself, brings together many of the concepts discussed throughout the book and outlines two sample applications, both of which involve manipulating metadata, including information about links.

When is a Link a Link and When is a Link Metadata?

A link is a relationship between two resources. A link is often represented by explicit markup, for example by an <A> element in HTML or using XLink. The fact that the link exists is metadata about the link, and about the two resources; the relationship itself is metadata about the two resources. The following examples illustrate this, perhaps more clearly.

The markup Table of Contents in an HTML document (chapter12.html, say) represents a link between a document and a table of contents which (one presumes) mentions that document.

The statement, "there is a link between chapter12.html and toc.html" is itself a piece of metadata, because it's information about information.

If I use XPath and XLink to store the link markup in a separate database instead of the actual file, perhaps using "Table of Contents" as a string to search for, I have muddied the waters: I have stored metadata (the fact that there is a link) an the data itself (in this case, the link markup) together. As someone who likes to splash about barefoot in the mud I don't have a problem with this, but it means that the term metadata can be confusing.

If I add to the link markup in my HTML file the fact that it's a link to a table of contents, I have created some inline metadata, showing that metadata doesn't need to be stored separately:

Table of Contents

I have added REL to show the relationship between the document containing the link (chapter12.html) and the remote resource (toc.html). That's information about the link, of course. I've also added a Title attribute giving the title of the remote resource, although strictly speaking that's a Microsoft Internet Explorer feature.

In this chapter, the term "metadata" is used to include stored information about links, whether or not a pedantic lexicographer from the Isle of Wight would agree.

Reasons to Store Metadata in a Database

There are many reasons to store metadata (including links!) in a database; the following sections describe some of them, and give implementation suggestions.

Searches and Queries

One of the more obvious reasons to put things into a database is so that you can get them back out again in a different order. The following fictitious query might find all documents that were written by Liam and that contain a link to a picture whose title (in the metadata database) is "splashing barefoot through muddy puddles". You could take this one step further and find all other images on the same page and list their titles.

SELECT (url, title) FROM docs, links

 WHERE docs.author LIKE 'Liam'

 AND docs.id = links.id

 AND links.mimetype LIKE 'image/%'

 AND links.title LIKE 'splashing barefoot through muddy puddles'

 ;

The syntax here is deliberately a little vague, because in practice you'd use multiple tables. Let's explore this a little, supposing, for now, that we are storing a range of documents, all in XML, on a web site, and delivering XML using the XML Style Language, XSL.

We'll store the following information about each document:

· the filename and location (separately so we can move files around);

· the document's author and creation data, not the same as the file creation data;

· the document's title and keywords;

· a MIME media type for each document (text/xml or image/jpeg, for example);

· a unique ID, for efficient joins.

In addition, we'll make a separate "links" table, storing:

· a link type (table of contents, annotation, etc.);

· a pair of linked documents

A multi-way link with three end points would have two rows in the links table, one for each arc.

NOTE

If you allow a URL instead of a file name and location, you will need to use a VARTEXT or VARCHAR field that allows at least 2048 bytes for the URL, as some browsers accept them that long. Other older browsers truncate at 1024 characters. The original Web architecture only allowed 72 characters, since HTML had a MIME media type of text/html, and text files have a 72-character line length restriction, but the author is not aware of any software that ever enforced this.

The next decision is how to obtain the data. Since we've said it's in out XML files, we could run an XML parser over them, perhaps using Perl and a SAX-based parser, or we could use sgrep. We are then considering the XML files to be authoritative, and not the database. This is an unusual state of mind for many database programmers, so expect to have to explain it carefully, to make sure everyone involved understands.

It's not generally possible to search images for keywords, so you'll have to make a separate database for those, or link to an external asset management system if you have one. Be careful to separate the parts of the database that are derived from external data and those parts that contain authoritative data that was entered directly into the database.

Once you have the data entered, you can easily start playing with queries such as that in the example at the start of this section. You could also use PHP, or Apache's mod_perl and DBI, to write a web-based search interface. Be careful not to let people type arbitrary SQL, since DELETE and INSERT can change your database! Or, if you do, use an account that doesn't have write access, and handle the errors in your interface.

Link Visualization

Another use for metadata in a database is so you can draw pictures of it. This can really help people to explore the data, or to fix errors. The author made a picture of his IRC glossary (mentioned in Chapter 15 on links) and discovered some clusters of terms that were not linked well to other related terms. This had not been obvious by looking at individual glossary entries, but was clear from the map. In that case, there was no database involved: a CGI script in Perl generated an HTML page on the fly by reading the HTML glossary, and the HTML page in turn invoked a Java applet to show the result. The following Perl script does this; it could be made simpler and faster by using DBI and a link database, and shorter by using the Perl HTML::LinkExtor from CPAN.

The code assumes that it's in the same directory as the GraphLayout demo included with the Java development kit from Sun. You may need to recompile the demo with larger values in the node and arcs arrays. You can try this out at www.valinor.sorcery.net/applets/javagloss.cgi (or find Ankh on irc.sorcery.net and ask him where it moved to if it's gone!).

#! /usr/local/bin/perl -w

use strict;

sub main
{

 print "Content-type: text/html\r\n\r\n";

 print <<EOF;

<html><head>

<title>Valinor: Wobbly Glossary</title>

<body bgcolor="#000000" text="#CC9977">

<h2>Valinor's Wobbly Java IRC Glossary</h2>

EOF

 makeAppletTagsfromLinks();

 exit(0);

}

sub fail
{

 my ($str) = @_;

 print "<h2>dithathter!</h2>\n";

 print "<p>$str</p>\n";

 exit(0);

}

######

sub makeAppletTagsfromLinks
{

 my $links = getGlossLinks();

 print <<EOF;

<applet code="Graph.class" width=900 height=800>

 <param name=edges value="${links}">

 <param name=center value="index">

</applet>

<hr>

EOF

}

sub getGlossLinks()

{

 my %arcs;

 my %seen;

 my %linkCounts;

 my $glossDir = "/usr/home/liam/public_html/valinor/glossary";

 my $glossFile = "${glossDir}/index.html";

 open(GLOSS, "< $glossFile") ||

 fail("Can't read glossary index file $glossFile: $!");

 $seen{"index.html"} = 1;

 # read the main index.html file and process all the links in it
 while (<GLOSS>) {

 while (m/<a[^<>]+href="([^"]+)"/ig) {

 # for each link...
 my $other = $1;

 # ignore all except relative links to files:
 next if ($other =~ m@/@);

 # process each file only once:
 next if ($seen{$other});

 $seen{$other} = 1;

 # Process the linked file.
 # This is not recursive, so we will only ever include files
 # linked to from index.html or directly from those files:
 # the goal was to look at just the glossary.
 open(OTHER, "< ${glossDir}/$other") || next;

 $other =~ s/\.html//;

 $arcs{ "index" . "/" . $other } = 1;

 while (<OTHER>) {

 while (m/<a[^<>]+href="([^"]+)"/ig) {

 my $end = $1;

 next if ($end =~ m@/@) {

 $end =~ s/\.html//;

 next if (exists $arcs{ $end . "/" . $other});

 $arcs{ $other . "/" . $end } = 1;

 ++$linkCounts{$other};

 }

 }

 close(OTHER);

 }

 }

 close(GLOSS);

 # now build up a list of arcs with distances apart to draw them:
 my $result = ""; my $pair;

 foreach $pair (keys %arcs) {

 # generate "node1,node2/d,node1,node3/d,node3,node4/d....."
 # where d is the perferred line length in pixels for each arc
 $pair =~ tr{-/}{_-}; # remove - and turn / into -
 my $distance;

 if (/index\b/) { # long links to spread the glossary out
 $distance = int(rand(200)) + 175;

 } else { # shorter links between items
 $distance = int(rand(100)) + 50;

 }

 $result .= ",$pair/$distance";

 }

 $result =~ s/^,//;

 return $result;

}

now do the real work:
main();

You can see most of this short piece of Perl is devoted to extracting HTML links out of files. I've left it in this form because it's easy to play with and easy to understand. You could convert it to use DBI by combining it with one of the examples from Part One of this book, and maybe use the link extraction code to populate a database. The point to understand is that you can use a mixture of tools to glue components together -- in this case, a bunch of HTML files, a Java applet and some Perl.

If you are familiar with Java you could modify the GraphDemo applet directly to contact a database, perhaps using a Servlet. As I said in the Introduction to this book, I'm not assuming a knowledge of Java. mostly because there are already half a billion other books on Java but few on mixing Perl, C, databases and XML. But the GraphDemo is pretty easy to edit and quite fun.

There are a great many link visualization tools. Petros Demetriades and Alexandra Poulovassilis describe one at the Seventh International World Wide Web Conference in 1998 (www.dcs.kcl.ac.uk/pg/petros and links). There was another described at the Third WWW Conference in Darmstadt in 1995 by Andrew Wood et al. at the University of Birmingham (Andrew has a Java demo at www.cs.bham.ac.uk/~amw/hyperspace/java/enhanced.html). A quick web search at www.metacrawler.com yields many more.

We've gone from a fairly pedestrian set of SQL tables to a state of the art 3D Java representation of links between documents with hardly a blink. There have also been SQL-like languages proposed (and implemented) for reasoning about hypertext, some using obejct-oriented database, some traversing flat files, some using relational databases. There are research papers at Brown University (http://landow.stg.brown.edu/HTatBrown/BrownHT.html) and elsewhere: hypertext research started in earnest in the 1960s and has been going strong ever since.

Once you've put metadata into a database, you should be able to mine the data in a great many ways.

Groups of Related Documents

If you have a database of topics, you can present the documents in "virtual folders" by category. The author used this for a dictionary of eighteenth century slang: each dictionary entry was marked up with one or more category keywords, and virtual indexes created showing all matching pages. The Perl AutoLinker listed in Chapter 15 does not show this, by the way, mostly to save paper.

You can take this clustering approach further by analyzing the words in the documents; this is a common technique in text retrieval, and there are many research papers on the subject. The reading list in the Resource Guide for the Information Retrieval chapter is useful here, and Doug Pederson and others at Xerox have published some helpful papers (available online) on the subject.

Extra link functionality

Although HTML links are familiar to millions of people, XML links are more powerful, as we have seen in Chapter 14. If you generate HTML or XML on the fly from a database, perhaps with XSLT or PHP, you can use the stored metadata to generate extra links. The next two sections give some examples.

What's Related

As Jakob Nielsen notes in his excellent book Designing Web Usability (New Riders, 2000), a set of Further Links at the end of a web page can help people who found the wrong document as well as those who want to know more. If your database stores information about which documents are about related topics, or are about topics that are often confused one with another, you can generate Further Reading and What's Related links easily.

The author tried this with the Internet Relay Chat glossary that's been mentioned, and noticed people staying on the site much longer, following the links to related material and often bookmarking it.

You can do this on almost any web site, if you have access to the httpd log files. Enable the more detailed log format that includes browser and referring page. You can use the browser to spot search engines and robots, and ignore them. Then use the referrer field to see when people came from one of the big search engines. If you sort the log by the address of the client requesting the page, then by their browser, then by time, you tend to see a whole session at a time. Figure 17.1 shows the author's Web Reports tool used to do this; you can get Web Reports from www.holoweb.net/~liam if you want to try this on your own site.

When an Internet Explorer 5 user bookmarks a page, IE5 tries to fetch favicon.ico from that directory and then, if it's not found, from "/"; this lets you have an idea of how many people are bookmarking a page.

Figure 17.1: An Excerpt From a WebReports Page

TODO screnshot in Mozilla

Multiway Links

If your link structure is held in a database, you can generate different markup on the fly as appropriate. XML users can have multi-way links with popup menus to let them choose which branch to follow, and HTML users can have document layers or windows that pop up with JavaScript, or multiple <A> elements.

Navigational Aids

If you are generating HTML or XML for online viewing, it's a good idea to make navigational tools to help users. For example, you could generate information showing the position of the current page in a stream. Figure 17.2 shows a possible graphic for the IRC Glossary, showing linked terms.

Figure 17.2: Second Level Links For Navigation

TODO show the curernt page with sticks to linked paegs

Link Management and Analysis

Link Management could be thought of as encompassing much of the previous examples, but it sounds more formal; the visualization mentioned above is a form of analysis.

link checking

A constant frustration of Web users is that links that go astray. There are several approaches to avoiding this problem, including the following:

1. Regular checking of all links, whether by hand or by script.

2. Regular checking of HTTP error logs; this can often be surprisingly useful.

3. Generating web sites from a database, so that every generated link starts out as a NOT NULL database reference, and is therefore automatically correct.

4. Using an intermediate redirect script that checks links and gives a corrected URL if necessary.

In practice, a combination is usually best, especially if you have off-site links.

The Perl Cookbook (Tom Christiansen and Nathan Torkington, O'Reilly, 1998) gives examples in Chapter 20 of using the Perl LWP::Simple and HTML::Parser modules from CPAN (www.cpan.org) to check for stale links. If you have your links in a database, though, you only need to check each link once. The DBI book (Programming the Perl DBI, Alligator Descartes and Tim Bunce, O'Reilly, 2000) is a good investment if you want to combine the approaches. If you bought this book to avoid buying all those other ones, don't panic; just read the online documentation for the various Perl modules with the perldoc command. You can find documentation for many of the XML-related modules in the Resource Guide too, since the information isn't in print elsewhere.

It's also interesting to see what analysis you can do. If you loaded your Apache httpd web server logs into a database, you could use SQL and database visualization tools to explore it.

Document Management

Most document management systems store metadata about users and about documents; they can then handle permissions, workflow and searching. Document Management was discussed in more detail in Part Two of this book. Suffice to note that storing only the metadata in a database and the document externally is often a good way to start building a document management system. Later you could evolve to offering the W3C Document Object Model API (DOM) to customers or users.

Summary

Once you start putting information in databases, you can have all sorts of fun analyzing it and generating different views of it. That is, after all, much of the value of a relational database.

Try to ask yourself, "what soft of questions can I answer with these tools?" and then go and answer them!

The next chapter outlines some worked examples that combine many of these ideas. After that, you are done with the main text of this book, and it's time to write applications of your own!

