Chapter 1:

Just Enough XML

This chapter describes the concepts and ideas behind XML, and gives you enough of a technical understanding of XML for you to be comfortable with the rest of the book. If you decide to learn more about XML, you may be interested in reading the books described in the reading list at the end of the chapter.

This chapter starts with a quick overview (What is XML?) and then gives a reference to the main features and syntax of XML. It is not complete, but all of the XML features used in this book are described, and the features not described are mentioned so that you can recognise them and look them up in the online XML specification itself if you need to. A copy of the XML specification is also included on the CD-ROM with this book.

What is XML?

The Extensible Markup Language is a way of representing information that is, to some extent, self-describing. You can use XML to design miniature markup languages of your own that are tailored to specific problem domains.

Another way to look at XML is as a more elegantly designed and more flexible version of HTML. This is not technically accurate, but it’s a good start.

XML files or streams are called documents, even though they might not contain anything you would ever read or print. It may feel odd to call an authentication ticket for an electronic funds transfer a ‘document’, but the term emphasises something very important: XML is a text-based format and not a binary one.

Here is a quick example:

<?xml version=”1.0”>

<Book>

 <Title>The Silmarillion</Title>
 <Author>Tolkien, J.R.R.</Author>
 <Date>1980</Date>
</Book>

XML is based on the ISO standard language ISO 8879:1988 SGML (Standard Generalized Markup Language). This is important to know because it means that the language, like SQL, is not vendor-specific, and is likely to last for a long time. XML itself was defined by the World Wide Web Consortium as a subset of SGML, intended to be easier for programmers to implement. The XML specification clearly met that goal, since at the time of writing there are already more XML implementations than anyone can count.

In the <Book> example above, there are three kinds of thing:

1. The XML declaration at the start identifies the document as being XML. This declaration is optional, but it’s certainly a very good idea to have one.

2. There is some textual information in the example such as a Year of Publication of 1980, and the author’s name.

3. There is some markup that identifies the various pieces of information: <Title>, <Date> and so on.

The markup can get more complex than this example shows, as you may expect. The basic rules are always the same, though, and they are pretty simple. The textual information often contains embedded markup too:

<Instruction>
 Clean your attaché case using the

 Soft Rag <PartNo>1991</PartNo>.

</Instruction>
In the example here, there are two types of embedded markup. First, there is what XML calls a general entity. The term ‘entity’ is heavily used both in the database world and in the XML specification, and the meanings are not at all the same. In this case, the reference to the general entity eacute is used to provide a textual platform-independent way of writing the character é (e with acute accent). Although general entities are part of XML, this particular entity is not; XML provides a way of defining your own general entities, which is described in the section Document Type Definitions later in this chapter.

The second piece of markup in the <Instruction> example is an element called PartNo. If you are used to working with relational data, you may well be used to thinking of information in terms of relationships between atomic units, but in fact a great deal of information is embedded in textual descriptions. Imagine trying to search a large collection of documents for part number 1991 without finding documents containing the date 3rd August 1991, and the advantage of the nested markup becomes very clear. Or, one might say, <emphasis>very</emphasis> clear.

Nested objects, such as a part number inside an instruction, have often proved difficult to handle in a relational database world. In the first Part of this book, we’ll be looking primarily at the sort of data you might customarily find in a relational database, in which any markup intermingled with text in this way is either not allowed, or is treated simply as a sequence of characters. In later Parts of the book, we look at ways to handle more complex XML data.

What XML is Not

This may be a good time to banish some common misconceptions before they rise up and confront us later, confusing and bewildering all in their path.

First of all, XML is not a programming language. You can’t declare variables, set triggers on events, loop thirty times, or do anything else at all except use XML to describe information. XML does not have any built-in meaning for constructs such as if or else, and does not have any built-in scripting language.

Second, XML is not HTML, despite the obvious superficial similarities. The basic HTML behaviours, such as the idea that includes an image, or that <P> starts a paragraph, are not built in to XML. As we shall see under Namespaces below, you can access the HTML elements and their behaviour from XML, if the application you are using supports HTML rendering, rather as a database API might permit one to access SQL functionality from within a C program.

Third, XML is SGML. That is, every fully conforming syntactically correct and valid XML document is also a valid SGML document, because of the way in which the XML specification was written. XML is, however, a fairly small subset of SGML, so that many SGML documents are not also XML documents.

XML Reference

This section describes all of the features of XML. In some cases, if you need more detail, you can turn to either the specification itself or a book such as The XML Specification Guide. The first part of explaining XML is therefore an explanation of how to read the XML specification itself; we then describe each part of an XML document, and then the optional document type definition.

Reading the XML Specification

This section describes how to make the best use out of the XML specification. You might like to read it in an annotated form too, in which case the book "The XML Specification Guide" (Ian S. Graham and Liam R. E. Quin, Wiley, 1999) might be of use to you.

It’s a Specification, Not a Tutorial.

The XML specification is not written to be easy to read. It is written to be precise enough that programmers will all implement it in the same way.

The biggest consequence of this is that if you are not used to reading specifications, you will probably find it tough going. You should also note that almost every word was carefully chosen, even down to distinctions between words such as can and may and must.

Rules Expressed in BNF

The XML specification uses Extended Backas-Naur Form (EBNF, or BNF for short!) to represent grammatical productions. For example, you might see:

[1] Document ::= prolog element Misc*

[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

This means that a Document is defined as a prolog followed by exactly one element followed by zero of more things (because of the *) that match the production Misc. The details of the expression on the right hand side is basically the same as for element content models that are described below under Document Type Definitions.

Numbered Productions

The numbers [1] and [2] in the example above are Production Numbers; they are referred to frequently in the specification, and you'll also find that The XML Specification Guide has a cross reference to them inside the back cover. There is a copy of that production index on the CD-ROM with this book.

The Specification Lives at http://www.w3.org/
You can find the latest XML specification at http://www.w3.org/, the web site of the World Wide Web Consortium that published the XML specification. The version there is authoritative and correct.

The specification can also be found on the CD-ROM that accompanies this book.

XML Document Features

This section describes the XML features you'll find within a document. Later sections describe the Document Type Definition, name spaces and style sheets.

Please do bear in mind that this chapter is intended as a review. If you have not encountered SGML, HTML or XML before, you may prefer to try another book, or even an online tutorial; on the other hand, if you chose this book, you are probably a technical manager or a programmer, and you pick things up quickly!

Character Set

XML documents are plain text files, in US ASCII, Latin 1 (also known as ISO 8859-1), or in Unicode encoded with UTF-8 or UTF-16. You may sometimes encounter other variations, but these are the main ones.

If a document is in another character set, it will say so in the prolog (see next section). If a part of a document is in another character set, that part must be stored as a separate external entity and its character set must be identified; see the section on external entities below.

The Prolog

Every XML document begins with a prolog. The prolog consists of an optional XML Declaration and an optional document type declaration. There can be comments and processing instructions after both the XML Declaration and the document type declaration. The XML specification writes it like this:

Prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?

Since all of these things are optional, you don't have to have a prolog, but it's a good idea.

The XML Declaration

The XML Declaration looks like this:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

The important things to notice here are:

· The XML declaration begins with "<?xml" and ends with "?>". It is a common error to omit the "?" from the end of the declaration.

· The version, encoding and standalone items must occur in the order shown.

· The version will always be "1.0", since that's the current version of XML.

· You can generally omit the encoding item if it's ISO-8859-1, and if that's the default processing character set in your environment. Other plausible values are ASCII, UTF-8, UTF-16, ISO-10646-UCS-4, ISO-8859-2, Shift-JIS, EUC-JP and ISO-2022-JP. If XML is transmitted over the web, the HTTP Content-type header must match the encoding label in the XML declaration. Ian Graham's "The HTML Sourcebook" (Wiley Inc.) has a useful summary of the HTTP protocol.

· The standalone declaration is set to yes is the XML processor does not need to read an external document type declaration; see the section on Document Type Declarations below.

Comments

After the XML Declaration, there are optional comments, which have the same syntax as HTML and SGML. Note that you can't start an XML document with a comment and then have an XML declaration:

<!--* illegal example: *-->

<?xml version="1.0"?>

Comments start with "<!--" and finish with "-->"; you cannot include "--" in a comment, and they don't nest.

You can have multi-line comments. The author prefers to make these look distinct with asterisks, as follows:

<!--* This comment can easily be seen and

 * recognised as a comment.

 * That's especially important if you comment out markup,

 * <!ELEMENT eve (smile|insight)+>

 * because it's clear that the ELEMENT line is not a declaration.

 *-->

The declaration commented out here is explained under Element Declarations below; for now, suffice to say that the important point is that you should make comments plainly visible.

The Document Type Declaration

This is a line that identifies what sort of document follows; it's often called the DOCTYPE declaration because of the keyword it uses. Here is an example:

<!DOCTYPE children SYSTEM "http://www.holoweb.net/xml/children.dtd">

This says that the root element is called children, and that the definition for this sort of document can be found at the URL given. The keyword SYSTEM is optional, and, if present, must be followed by a valid URL. The URL is read relative to the document that contains it, as usual, so that if the XML document were to be stored at http:/www.holoweb.xml/docs/c901.xml, the URL could have been "../xml/children.dtd" instead. Windows and MS-DOS users need to be careful to use "/" and not "\" here, as elsewhere in XML.

If you don't have an external document type definition (see below), you can use a simpler form:

<!DOCTYPE children>

but if you do that, you might as well omit the DOCTYPE declaration altogether.

There are several variations on a DOCTYPE declaration, including PUBLIC identifiers (an SGML idea that crept into XML by mistake, in the author's opinion) and the ability to include declarations. We will explore the second of these variations more when we talk about entities, element declarations and document type definitions. You would include definitions there if you wanted to define entities, or if you wanted a self-contained document with no external DTD, but still wanted the benefits of validation checking.

Here is an example of a Document Type Declaration that includes some definitions, contained between square brackets in what is formally called an Internal document type definition subset, and informally called the subset, or the DTD subset:

<!DOCTYPE children SYSTEM "http://www.holoweb.net/xml/children.dtd" [

 <!ENTITY David "David Pilgrim">

 <!ENTITY Ganny "Mithrandir">

 <!ENTITY poem SYSTEM "http://www.holoweb.net/xml/poems/p12.xml">

]>

The declarations here are explained in the sections on Entities below.

TIP:

The Document Type Declaration is a declaration of where to find the Document Type Definition. The similarity of the two terms is, however, still confusing.

Summary of the XML Prolog

Although the XML 1.0 specification says that the Declaration is optional, every XML file should start with one. There should be no blank lines or spaces before it, and there must not be any comments before it. This practice will help interoperability, and also helps non-XML tools to identify XML files.

If your XML document is not stored in ASCII or Latin 1, or if those are not the default character sets (e.g. on an IBM mainframe, a Macintosh or a Windows 98 system), you should use an encoding declaration.

If your file is stored in Unicode, it can begin with the Unicode Byte Order Mark.

If reading your DTD will not change the meaning of your document, you can use a Standalone declaration.

If you have a DTD, you use a Document Type Declaration to say where it is. You can also include definitions in the DOCTYPE Declaration directly.

Elements

An XML document consists, as has been said, of a prolog followed by a single XML element. This element is called the root element, or the document type element, and it can contain other element. Here is an example of an XML document with a prolog and a single element:

<?xml version="1.0" encoding="ASCII"?>

<!DOCTYPE para>

<para>This is a document with only one element in it,

and some text.</para>

Elements are the fundamental building blocks of XML. An element can contain any mixture of other elements and text. It can also contain references to entities (described below).

Tags

An element begins with a start tag, contains content, and finishes with an end tag.

A start tag looks like this:

<para>

or like this, if it has attributes:

<para weight="3" writer="Liam Quin">

An end tag looks like this:

</para>

If an element has content, it goes between the start and end tags. Content is any mixture of Text (described below) and more elements.

An element with no content can have a special end tag: the following two forms are the equivalent:

<para></para>

<para/>

Element names are case sensitive, so that the following fragment is in error:

<Para>incorrect</para>

Elements whose names begin with "xml" (in any combination of upper and lower case) are reserved for use by XML itself; you should not define them yourself. You can use any sequence of letters, numbers and Unicode name characters in a name, as long as it starts with a letter. You can also include underscore (_) and dot (.) in names.

The elements in a document build up a tree, which is why the topmost element is called the root.

Consider the following simple document:

<?xml version="1.0" encoding="ASCII"?>

<!DOCTYPE brats>

<brats>

 <brat><name>Simon</name><age>14</age><hair>Fair</hair></brat>

 <brat><name>Luthien</name><age>27</age><hair>Chestnut</hair></brat>

 <brat><name>Ben</name><age>17</age><hair>Fiery red</hair></brat>

</brats>

One possible tree for this document is shown in Figure 1. The figure does not emphasize that the order of the children elements (the three brat elements) is significant, but it does show the hierarchy.

If you come from a relational database world, you will need to keep reminding yourself that sequence and containment are fundamental to XML, and pervade it completely. Most authors would be upset if their paragraphs were returned in the wrong order! You should also notice how one element can contain others. In a relational database, this might seem a little like one field containing an entire table, and although that's not usually a possible implementation, it's exactly the right way to look at it.

Figure 1: Document tree for the Brats

quinp1c1fig01.tif

[image: image1.png]Fiery red

= Luthien

— = < Chestnut

Since Elements must form a tree, they must nest properly. The following example is illegal in both HTML and XML, but some HTML browsers try to patch it up silently:

<P>David <I>loves Simon</I> but Simon loves Julia</p>

Here is a possible interpretation, and a well-formed way to mark it up:

<P>David <I>loves</I> <I>Simon</I> but Simon loves Julia</P>

It's actually far more likely to have been a mistake, of course, so at the risk of boring you with gossip, here is one final interpretation. The ability to catch this sort of error is a very important feature of XML.

<P>David <I>loves</I> Simon but Simon loves Julia</P>

(however you look at this example, it's a bit of a mess)

Attributes

If elements contain Text intermixed with other elements, attributes are properties of elements. Attributes appear inside start tags, like this:

<Student id="m31095" name="Simon Whitehead" DOB="19630228" instrument='Double Bass'>

Simon's Content appears here, perhaps <Disposition>Simon is always a cheerful fellow</Disposition>

</Student>

If you are used to HTML, note that the quotes are required around the attribute values; see the section on Attributes below. You can use either double or single quotes around an attribute value, as long as they are both the same: compare the name and instrument attributes.

Attributes can contain entity references (described below), but not elements. As a result, you should not use an attribute to contain structured data that will need to be broken down into components, such as Last Name and First Name. The name example above would be better written like this:

<Student id="m31095" BirthDate="19630228">

 <FirstName>Simon</FirstName>

 <LastName>Whitehead</LastName>

 <Instrument>Double Bass</Instrument>

 <Disposition> Simon is always a cheerful fellow</Disposition>

</Student>

You can't repeat an attribute; this is illegal:

<Teacher course="cs101" course="cs109">illegal</Teacher>

You can repeat elements in content, however:

<Teacher>

 <teaches course="cs101" />

 <teaches course="cs109" />

</Teacher>

The preceding example also shows how you can use attributes in an empty element: course has no content, so it has the "/"at the end of its tag, and no end-tag.

It is possible to exercise control over what can go inside an attribute: see the section on Document Type Definitions below for examples.

Attributes whose names begin with "xml" (in any combination of upper and lower case) are reserved for use by XML itself; you should not define them yourself.

White Space

In HTML documents, multiple blanks are generally treated as a single space, and spaces at the start and end of a paragraph or heading are silently ignored.

The rules are either very vague or almost impossibly complex, depending on how you look at it, but in either case XML needed to be simple, clear and precise. The XML rule is that all white space in the input is passed on to the application reading it. An application is free to treat white space however it likes.

You can use a hint in your document to say how you want white space to be treated: within any element bearing the attribute xml:space='preserve', whitespace is to be treated as part of data and not discarded or collapsed. Within such an element, any sub-element can in turn put things back to how they were just within its own content, with xml:space="default". Of course an element with that could specify xml:spce="preserve" (there is no distinction between single and double quotes around the value).

White space is difficult to get right in programs; it looks deceptively simple, and it isn't.

Text Content (#PCDATA)

Most XML documents contain at least a little text. The Student example above has a FirstName element with text content of "Simon". Formally, wherever you can have text content, you can also have white space, character references and general entity references. Furthermore, any XML element that can have text content can be empty.

When an element is declared to have text content in a Document Type Definition (see below), the keyword #PCDATA is used, so you will sometimes hear the words used interchangeably. The keyword PCDATA is a jargonesque abbreviation for Parsed Character Data, which in turn is a needlessly complicated way of saying Text Content!

Character References

You can refer to any Unicode character by number anywhere text or markup would be allowed.

This is done with a character reference, which looks like Ƨ in decimal, or Ƨ in hexadecimal.

Character references are used to insert characters that otherwise would be treated as markup, or that one can't easily enter from a keyboard.

To escape a less-than-sign, perhaps to include "if (a<b)" in XML text without having the parser thing you are trying to start an open tag for a b element, you can use &a<b, since the less-than sign is character 60 in ASCI and Unicode. A clearer way to write this is a<b, where "<" is the less-than entity described under Entities below.

To refer to an e with an acute accent, you could in similar way use é since that's the number for an e with acute accent. If you're using the X Window system, you can see the Latin 1 (ISO-8859-1) character set in 16pt Times Roman with this command:

$ xfd -fn '-*-times-medium-r-normal--*-160-100-100-p-*-iso8859-1' &
Another way is to run the xfontsel program, choose a font with the ISO-8859-1 character set, use the xfontsel Select button, and paste the resulting font name into a terminal window instead of typing it.

An even easier way is to use the é entity, as per HTML, but this entity is not defined in XML by default; see the section on General entities below for how to define it yourself.

Unicode and Character Sets

Whole books could be written on the subject of character sets, and have been! If you are interested, or need to know how to represent languages that can't use the Latin 1 character set, see http://www.unicode.org/ and perhaps also the character set appendix to The XML Specification Guide.

For the purpose of this book, all XML documents will use either US ASCII or ISO 8859-1, not because other languages are less important but because multilingual issues are not central to using databases with XML.

When an XML document is served up over the Web using HTTP, the MIME Content-Type header must be the same as the encoding given in the XML declaration in the document. If you're not sending your XML over the web, you can ignore this. If you're not familiar with how HTTP handles character sets and encodings, see Ian S. Graham's "The HTML Sourcebook" or the IETF HTTP documentation. There is an overview of how HTTP works in the next chapter, which is about Client/Server architectures in general.

A Unicode file may be stored with a Unicode "byte order mark" at the start; an XML document that starts with such a mark is assumed to be in the corresponding Unicode encoding.

General Entities

One of the most powerful differences between HTML and XML is the support of General Entities. A General Entity is a name that gets replaced with a string, or with the contents of a file. You could think of entities as like simple macros.

C Programmers are familiar with these concepts:

#define DEFAULT_HOST "localhost" /* connect here if no other host given */

#include <net/inet.h>

#include "mydefs.h"

In Perl, you might write this:

my $DEFAULT_HOST = "localhost";

use NET::INET;

use mydefs;

A Java programmer would use import and a String constant.

Well, this is all stuff from the early 1960s, you're saying, what's so special about it?

Textual markup has traditionally been an area where programming and writing come together: the purpose of XML is to make information easier to process by computer. It's an area where scripting languages such as Perl, tcl and Omnimark flourish. But the idea of keeping processing separate from information is an important one. If you start putting fragments of programs inside your information, you turn it from information that can be used in lots of ways into a program that does only one thing.

So XML has limited support for inclusions and definitions, as follows:

1. Use an external entity to include a fragment of XML.

2. Use a general entity to define a replaceable text string.

Within a Document Type Definition (described in a separate section below), you use a parameter entity instead; parameter entities are described in the section on DTDs. General Text and External entities are described next.

General Text Entities

A General Text Entity (the normal kind) is declared like this:

<!ENTITY name "replacement value">

Entity declarations go in the document type definition, or they can go in the conveniently named document type definition internal subset in the document type declaration. Translated to English, you can define your entities in an external file (the DTD) or at the start of the document, in the DOCTYPE subset. We will return to this topic (with pictures!) in the Document Type Definitions section below. For now, let's assume you're putting the declarations at the start of your file, as in the example under the Document Type Declaration above.

You can use the entity within the body of your document like this:

<p>Anywhere you can have text, you can use &name;</p>

This is called an entity reference.

WARNING

Entity names are case sensitive, so that Server and server are two entirely unrelated entities.

You can use the entity as many times as you like, but you can't change its value after the end of the DTD. If the same entity is declared twice, the second definition is ignored. We will use this fact later with Conditional Sections.

There are five pre-declared entities in XML:

Entity
Result

amp
&

apos
'

gt
>

lt
<

quot
"

You are not allowed to use the less-than (<) or greater-than (>) signs in entity values, so if you want to do that, you have to escape them:

<!ENTITY Ptag "<P>">

Now, in text, &Ptag; will produce <P>.

If you want to include a double quote, either use single quotes around the value, or use " like this;

<!ENTITY FirstWay 'here are "quotes"'>

<!ENTITY SecondWay "here are "quotes"">

If you want to include both single and double quotes, you have to use either entities or character references.

General Text Entities are most powerful when you combine them with an external DTD, which we will see how to do later.

External Entities

If you have written (or read) any C or C++ programs, you will have encountered the two forms of file inclusion:

#include <stdio.h>

includes a standard header file from a system-wide shared location (normally /usr/include on Unix systems);

#include "myfile.h"

includes a header file from the current directory, or by looking for the named file in a search path.

The ANSI C standard gives a set of C header files that you can include on any system.

In XML there are also two standard forms of file inclusion, using SYSTEM and PUBLIC identifiers, but only the second of these is sufficiently well defined to be useful.

Including a file involves first declaring a named "entity", and then referencing it wherever you want to include it.

Here is a declaration for an external entity:

<!ENTITY Poem SYSTEM "poem.xml">

Figure 2 shows the contents of the file "poem.xml", and Figure 3 shows the file "arnold,m.xml", which gives a brief description of the poet; Figure 4 shows an extract from the works of Matthew Arnold.

You can see how the poems are stored in separate files for convenience in editing, and the information about the poet is stored in a single place so it can be included in every poem.

Figure 2: An External Entity: Morality Poem (morality.xml)

<Poem firstPublished="1852">

 <!--* here we include the author info *-->

 &MatthewArnold;

 <Title>Morality</Title>

 <Verse>

 <Line>We cannot kindle when we will</Line>

 <Line>The fire that in the heart resides,</Line>

 <Line>The spirit bloweth and is still,</Line>

 <Line>In mystery our soul abides:</Line>

 <Line indent="2"> But tasks in hours of insight will'd</Line>

 <Line>Can be through hours of gloom fulfill'd.</Line>

 </Verse>

 <Verse>

 <Line>With aching hands and bleeding feet</Line>

 <Line>We dig and heap, lay stone on stone;</Line>

 <Line>We bear the burden and the heat</Line>

 <Line>Of the long day, and wish 'twere done.</Line>

 <Line indent="2"> Not till the hours of light return</Line>

 <Line>All we have built do we discern.</Line>

 </Verse>

 . . .

</Poem>

Figure 3: The file arnold,m.xml

<Poet>

 <Name>

 <lastName>Arnold</lastName>

 <firstNames>Matthew</firstNames>

 </Name>

 <Dates>

 <Born>1822</Born>

 <Died>1888</Died>

 </Dates>

 <description>

 Matthew Arnold was born at

 <place long="51 20" lat="0 30">Laleham</place> in

 Surrey, England, on Christmas day in 1822.

 He went to school at Winchester and Rugby, and

 studied at Balliol College Oxford.

 . . .

 </description>

</Poet>

Figure 4: Extract from the Works of Matthew Arnold

<?xml version="1.0" charset="ISO-8859-1"?>

<!DOCTYPE Writings [

 <!ENTITY thePoet
 SYSTEM "bios/arnold,m.xml"

 >

 <!--* some poems *-->

 <!ENTITY poem001
 SYSTEM "morality.xml"

 >

]>

<Writings>

 <!--* include the description of the poet *-->

 &thePoet;

 <!--* include a poem *-->

 &poem01;

</Writings>

Figure 5: Resulting XML Document

[quinp1c01f5morality.tif]

Entities and Element Attributes

You can put entity references in attribute values too, like this:

<picture src="http://&server;/&imageDir;/sock.jpg" />

If the entity server is defined to be "www.holoweb.net" and imageDir is defined as "xmlbook/images", the resulting URL is "http://www.holoweb.net/xmlbook/images/sock.jpg".

You can only use General Text Entities in attributes, and not External Entity References.

Processing instructions

You can include processing instructions anywhere you can put elements or Text Content: that is, inside the content of any element, but not inside tags or attributes.

The intent is that you use processing instructions for proprietary information that is not part of the document. For example, at least one commercial XML editor stores the last cursor position as a processing instruction.

The syntax of a Processing Instruction is:

<?target data ?>

The target is the name of a notation declared in the DTD (see below).

The data cannot contain less-than or greater-than signs, and the XML parser does not expand entity references within it, so that <?myprog start-mode=46 display="<bold>"?> is legal, but the application will have to expand < and > without any help from the XML parser.

Processing instructions are not used in this book.

WARNING

A processing instruction uses the same syntax as the XML Declaration described above; do not confuse them!

Document Type Definitions

You could think of XML as being a markup language definition language: whereas in HTML there is a fixed set of elements, you can use XML to define your own sets of elements. We've already seen several examples of this, and it's probably why you're reading the book.

What not everyone knows is that XML (like SGML) provides a way to check that a document conforms to a set of rules. You can say that a Person element must contain a lastName element, and perhaps some firstName or initials elements, but nothing else. You can also define which attributes are allowed on a particular element, and even say a little about what goes in them. You can say where Text Content is allowed, too.

Unfortunately, there are some things every database designer needs to do that XML does not let you do. You can't say that a firstName can be no more than 35 characters long, nor that textual content of an element cannot be empty. If you need to do these things, you have to use an XML Schema, but since those are not (at the time of writing) defined yet, you'll have to look in the Resources section at the end of the book and follow the links to find out more.

This chapter doesn't describe all of the features of Document Type Definitions, but only the ones that are most often used, and the ones used in the examples in this book.

Layout of a Document Type Definition

A DTD is a plain text file (it can be in Unicode) that can contain declarations. A DTD can be empty, too; that's not particularly useful, but if you're generating a DTD by program, it makes life simpler.

You can have comments and space between the declarations, but not inside them.

NOTE

I have used the terms Declaration and Definition almost interchangeably in this book, except for Document Type Definition and Document Type Declaration, which are two very different things.

How a DTD is Found

There are two kinds of DTD in XML: an internal subset and an external DTD. The only difference between them is in the way parameter entities are treated, as we shall see. The internal subset is found between the square brackets in the Document Type Declaration; there's an example above. The external subset is mentioned at the start of the Document Type Declaration (usually with the SYSTEM keyword) but is read at the end of it.

Suppose your XML document is called "http://www.leftfoot.org/docs/sock.xml" and that it uses a DTD called "http://www.leftfoot.org/dtds/hosiery.dtd". A suitable DOCTYPE declaration at the start of sock.xml would be as follows:

<!DOCTYPE sock SYSTEM "../hosiery.dtd">

This works because the SYSTEM keyword is followed by a URL, and that URL is interpreted relative to the file containing it, in this case sock.xml.

If there was an entity declaration for sockColour in the DTD, we could override it like this:

<!DOCTYPE sock SYSTEM "../hosiery.dtd" [

 <!ENTITY sockColour "black">

]>

This works because:

1. the internal subset (the part between the "[" and "]") is read before the external subset (hosiery.dtd);

2. the first entity declaration seen wins: an entity cannot be redefined, so subsequent entity definitions for sockColour are silently ignored.

We revisit this example under Parameter Entities below.

More complex SGML systems sometimes use PUBLIC identifiers and something called an SGML OPEN Catalog, a file that maps public identifier strings into filenames. This is not part of XML.

Comments and Spaces

You can put a comment in a DTD anywhere you can put a declaration. You cannot, however, put a comment inside a declaration.

The comment syntax in a DTD is the same as within the body of the document:

<!-- the contents of the comment go here -->

Although the comment starts with "<!--" and ends with "-->", you cannot include "--" in a comment.

Comments can be as long as you like, but they do not nest. If you need to comment out a chunk of a DTD for some reason, use a Conditional Section. Conditional Sections are described later in this chapter. Here are two examples of long comments, to show the benefit of laying them out clearly, much as one might in a C program.

<!ELEMENT example (z*)>

<!--

<!ELEMENT example (z+)>

The "example" element is used to contain zebras. -->

<!ATTLIST example colour CDATA #required> <--

The colour attribute lets us have a blue zebra, but

what if the zebra is striped? -->

and

<!ELEMENT example (z*)>

<!--*

 * <!ELEMENT example (z+)>

 * The "example" element is used to contain zebras.

 *-->

<!ATTLIST example colour CDATA #required>

<!--* The colour attribute lets us have a blue zebra, but

 * what if the zebra is striped?

 *-->

In the second example, it's pretty clear that the second "ELEMENT" line is commented out. When you are maintaining a large DTD, this quickly becomes important. You can also see that the ATTLIST is not commented out, which is difficult to see at a glance in the first version.

Anywhere you can put a space in a DTD, you can put multiple spaces. Blank lines are legal, so that you can use white space to group your declarations. Since a newline is a white space character, you can use indentation too.

Declaring Elements

XML does not require that you declare elements, but if you do declare them, the XML processor can check that they are used properly. If you declare all of your elements, the XML processor can go one step further and check that the entire document is valid according to the rules you have given. This means that the document contains no undeclared elements, that all elements declared as being required are indeed in the right place, and that all attributes have legal values. If you read the XML Specification, you'll see that there are Validity Constraints throughout, and a valid document meets all of those formal requirements.

There are usually two parts to an element declaration: one declares its name and what it can contain, using a content model. The other part specifies what attributes the element has. If there are no attributes, the Attribute List Declaration is not needed. We'll look at the two parts one by one.

Element Content Models

You declare an element and its content model like this:

<!ELEMENT sock

 (foot)

>

This declaration says that a sock element must contain a foot. It cannot contain any other sorts of elements, and it does not have Text Content. We'll see how to include Text Content in a moment.

Of course, this doesn't take empty socks into account, an unforgivable omission.

<!ELEMENT sock

 (foot?)

>

Now we have marked the foot as optional. As you've probably deduced, the stuff between the parentheses is a pattern, or regular expression. When the XML Processor validates a document, it does so by reading each element in the input in turn, and checking that the contents of that element match the pattern specified in the Element Declaration. This pattern is formally called the element's content model.

A content model can contain sequences with "," (a comma) and choices with a "|" (vertical bar, pronounced or). You can also group parts of a content model with parentheses. Here are some examples:

<!ELEMENT Table

 (title, Head, Body, Foot?)

>

<!ELEMENT Head

 (Title | Image | (ColumnDefinitions, Rows))

>

We have already seen the "?" operator, which makes the thing to its left optional. In the above example, a Table element in a document will match the content model for Table if it contains a title followed by a Head, followed by a Body element; there can be a single Foot element at the end, or not, because of the "?".

The other operators are "*" and "+". The star "*" means that the thing to its left can appear any number of times, including not at all. The plus sign ("+") means that the thing to its left must appear at least once, and can appear more times. There is no convenient notation to say that something must appear between 5 and 9 times.

<!--* simple model for Psalms, *-->

<!ELEMENT Psalm

 (Verse*)

>

<!--* This example is not taken from any EDI standard,

 * since I wanted something simple

 *-->

<!ELEMENT FinancialTransaction

 (Buyer, Seller, (Item, Amount, Tax*)+, TotalAmount, TotalTax, Total)

>

<!--* A Journey is a sequence of segments each using a

 * different mode of transport:

 *-->

<!ELEMENT Journey

 (Car | Plane | Bus | Ship | Rickshaw | Motorcycle | Bike | Feet)+

>

Declaring Text Content

Most XML Documents contain Text Content somewhere, and we need to say where it's allowed.

You declare Text Content by putting the keyword #PCDATA at the start of the content model in which text is allowed:

<!ELEMENT Paragraph (#PCDATA|Emphasis)* >

<!ELEMENT Emphasis (#PCDATA)>

The #PCDATA keyword must be the first thing in the content model, and the content model must be a "repeatable or-group"; that is, it must either be a list of elements separated by "|", with a "*" at the end, or be just #PCDATA by itself.

<Paragraph>The Paragraph above can contain <Emphasis>any number</Emphasis> of Emphasis elements interspersed with

any amount of text, <Emphasis>even no text at all</Emphasis>,

in which case it might be empty.</Paragraph>.

<Paragraph></Paragraph>

<Paragraph><Emphasis></Emphasis></Paragraph>

NOTE

The #PCDATA keyword matches zero or more characters of Text Content. There is no way to use an XML DTD to say that an element must have text in it, only that it is allowed to have text in it.

The following are some legal and illegal examples:

<!--* illegal: #PCDATA not at the start: *-->

<!ELEMENT Para (Emphais|Misery|#PCDATA)*>

<!--* illegal: no * at the end *-->

<!ELEMENT BadBoy (#PCDATA|OtherStuff)>

<!--* illegal: wrong sort of connector *-->

<!ELEMENT Chapter (#PCDATA, Para)*

<!--* legal *-->

<!ELEMENT BadBoy (#PCDATA|Shout|GetDirty|Trick|Play|Eat|Sleep)*>

<!--* legal: special case *-->

<!ELEMENT Title (#PCDATA)*>

<--* legal: even more special case *-->

<!ELEMENT Text (#PCDATA)>

Attributes and Attribute-list Declarations

An attribute is simply a name-value pair, like gender="male" or paidRent="no".

Just as the content model of an element says what can appear inside that element, so the attribute-list declaration (as it is formally called) says what attributes an element can have.

XML gives you more slightly control over attributes than over elements, oddly. The XML Schema working group is trying to change that for the future, but for now, this is what we have.

Formally, an Attribute-list Declaration is a list of attribute declarations, each of which declares a single attribute.

Informally, you use an Attribute-list declaration to say what attributes a given element has, and also to place some fairly basic limits on their values. Here is an example:

<!ATTLIST Publication
 Type (book|magazine|journal|essay|other) "book"

 Date CDATA #IMPLIED

 ID ID #REQUIRED

 Publisher IDREF #IMPLIED

>

The example says that a Publication element can take up to four attributes: here is an example you might find in the main body of a document:

<Publication

 Type="journal"

 Date="19990901"

 ID="mt99vol01issue2"

 Publisher="p9103"

>stuff</Publication>

You can't repeat attributes, and any attribute marked as #REQUIRED in the declaration must actually be present on every instance of the element. In our example, that means you must always have an attribute called "ID".

An attribute can be marked in the following ways:

#REQUIRED, meaning that it must always be given;

ID ID #REQUIRED

#IMPLIED, meaning that you can leave it off:

Date NMTOKEN #IMPLIED

#FIXED, meaning it always has the same value (we will revisit this under Namespaces and Architectures below);

Version CDATA #FIXED "1.3"

A string, meaning that if you omit the attribute, it is as if you gave it that value. You should be aware that default attribute values won't work if you use an XML Processor that doesn't read the DTD, since then it won't ever know about the defaults:

Type (book|magazine|journal|essay|other) "book"

Country CDATA "Botswana"

The attribute types are as follows:

CDATA
A CDATA attribute contains character data; that is, Text Content with no elements inside it: just a mix of text and general entities.

NMTOKEN
An NMTOKEN attribute must contain a string that would be valid as an element name.

ID
An ID-valued attribute is a name (like an NMTOKEN), but all ID attributes within a document must be unique, even if they occur on entirely different types of elements.

IDREF
An IDREF is a name that appears anywhere else in the document as an ID; some software, such as Interleaf's Panorama browser, automatically creates a link between an element with an IDREF and the element with the corresponding value in an ID-valued attribute. By convention, attributes of type ID and IDREF are normally called ID and IDREF, respectively.

ENTITY
An attribute of type ENTITY has to take as its value the name of a General Entity. This type is not used in this book.

Tokens
A list of possible name values, such as (boy|girl|child|petunia); if a default value is given, it must, of course, be one of the tokens in this list!

Finally, NMTOKEN, IDREF and ENTITY can be pluralised to NMTOKENS, IDREFS and ENTITIES, in which case the corresponding value is a space-separated list of values. There is no good reason why that list uses space, but other lists use commas or vertical bars; you just have to remember it.

You can have more than one attribute list for the same element; as long as you don't declare two different attributes with the same name, the result is to define all of the attributes:

<!ATTLIST Student

 StudentID ID #REQUIRED

>

<!ATTLIST Student

 EyeColour CDATA #IMPLIED

>

<!--* now a Student has both a Student ID and an Eye Colour. *-->

Parameter Entities

A Parameter Entity is just like a General Entity (see above) except that it occurs in the DTD. You can have a General Entity, a Parameter Entity, an Element and any number of Attributes with the same name: they are all different beasties.

You declare a parameter entity just like a general entity, except with an added "%" sign:

<!ENTITY % pubTypes "(book|magazine|journal|essay|other)">

<!ENTITY % moreStuff SYSTEM "morestuff.dtd">

<!ENTITY % isPubl 'IGNORE'>

WARNING

The space between the "%" and the entity name is very important. If you forget it, you will get strange and unexpected error messages.

There is a restriction on how you can use parameter entities in the Internal Subset; for the purpose of this book, we'll say that you can only use External Parameter Entities and Conditional Sections (see below) in the Internal Subset. You can define either sort of entity, though.

As with general entities, if the same entity is defined twice, the second definition is ignored.

Parameter Entities for String Reuse

One common use for parameter entities is to provide a layer of abstraction: that is, to be able to write element content models and attribute definitions using terms that reflect the problem rather than the implementation. This makes DTDs much easier to understand and maintain.

Here is a simple example that defines Block Level elements such as paragraphs and tables in one place, and the Running Text that goes inside them in another:

<!ENTITY % Blocks "P|Table|Illustration|Poem|Address|BlockQuote">

<!ENTITY % RunningText "#PCDATA|Emphasis|CrossReference">

<!--* now use the entities

 * (this example is not complete; see the Exercises)

 *-->

<!ELEMENT Book

 (Title, Chapter+)

>

<!ELEMENT Chapter

 (Title, (%Blocks;)+)

>

<!ELEMENT P

 (%RunningText;)*

>

<!ELEMENT Emphasis

 (%RunningText;)*

>

Notice how clear it is that the Emphasis element contains regular running text, and consider how easy it would be to add a new inline element such as FootNoteReference or InlineImage to this DTD fragment.

NOTE

You cannot use parameter entities in this way in the Internal Subset at the start of a document, but only in an external file.

Including a file with a parameter entity

You include a parameter entity by expanding it inline, much as with a General Entity, but using a percent sign ("%") instead of an ampersand ("&") to mark it as special:

<!ENTITY % myDefines "dtds/myDefines.dtd">

%myDefines;

As with an external General Entity, the SYSTEM identifier in a Parameter Entity Definition is a URL, and is treated as being relative to the document containing it. Perhaps a picture will help. Figure 6, Directory Structure for Parameter Entity Inclusion Example, shows a possible directory structure for storing some XML documents. It's just a quick sketch, not a firm Plan.

Figure 6: Directory Structure for Parameter Entity Inclusion Example

[image: image2.png]Socks UUC'AX
< i _ soeke . dEd

docs
E a,(‘ﬂj(@ Ll
dealecs
I o\e% .ent
SULkSl/\U\O-‘xML

{Zoaﬁweaﬁ COM

The file "argyle.xml" would start with a Document Type Declaration like this:

<!DOCTYPE socks SYSTEM "../dtds/socks.dtd">

so as to include the "socks.dtd" file. The DTD itself might include a master file that defines general text entities naming each of the files in the "dealers" directory. The DTD includes that master file, "defs.ent", like this:

<!ENTITY % master SYSTEM "dealers/defs.ent">

%master;

Notice very carefully how the System Identifier is "dealers/defs.ent" and not "../dealers/defs.ent", because it occurs inside "socks.dtd", and that's how to get from "socks.dtd" to "defs.ent". If you are more used to MS-DOS, Microsoft Windows or other non-open-source operating systems, notice also that the directory separator is the forward slash, "/", not the backslash (reverse solidus) character, "\". This forward slash is always used to separate components of a URL.

Now that we know how to include files with Parameter entities, it's time to revisit Matthew Arnold: yet a third way to include the DTD is shown in Figure 7. Note that this way gives you complete control over the order in which the various components are read.

You might be wondering why would anyone use a SYSTEM identifier on the DOCTYPE line. There are two main reasons. The first is for the benefit of non-XML tools that might know how to ignore a simple DOCTYPE line but get confused by more complex things. The second reason is that some people have the notion that the system identifier there in some way identifies the document as a whole. Neither of these seems to the author to be satisfactory. If you are serving XML documents up over the web, the few bytes you save might be considered useful, perhaps, but the best reason is simply that it's convenient.

Figure 7: Poems With Parameter Entities

<?xml version="1.0" charset="ISO-8859-1"?>

<!DOCTYPE Writings [

 <!--* include the DTD: *-->

 <!ENTITY % theDTD
 SYSTEM "http://www.holoweb.net/xmlbk2/dtds/poems.dtd"

 >

 %theDTD;

 <!--* define external entities for the poems *-->

 <!ENTITY % Poems
 SYSTEM "http://www.holoweb.net/xmlbk2/poems/arnold/poems.xml"

 >

 %Poems;

]>

<Writings>

 <!--* copy the rest from Figure 4 here *-->

</Writings>

Overriding Content Models Using Parameter Entities

Recall that if a parameter entity is defined more than once, all but the first definition are ignored.

Suppose the file "table.xml" contains amongst other things) the following snippet:

<!ENTITY % ThingsInCells "(#PCDATA)*">

<!ELEMENT TableCell

 %ThingsInCells;

>

Now suppose we have a DTD (or internal subset) like this:

<!ENTITY % ThingsInCells "(#PCDATA|Squiggle)*">

<!ENTITY % TableFragment SYSTEM "table.xml">

%TableFragment;

Now since ThingsInCells was defined in the DTD to be "(#PCDATA|Squiggle)", and since that definition was encountered before the definition in "table.xml", the content model of the TableCell element will allow Squiggle elements intermixed with textual content.

Conditional Sections

A Conditional Section is a part of a DTD that is included only if a keyword is set to "INCLUDE":

<![IGNORE[

<!--* All declarations are ignored inside

 * an IGNORED condtional section liks this one

 *-->

 <!ELEMENT unused (not|ever|seen)*>

 <![INCLUDE[

 <!--* including this part here!

 * This is ignored too

 *-->

]]>

<!--* up to (and including) the closing delimiter: *-->

]]>

Note that conditional sections nest. There is no way to escape the closing "]]>" string.

Conditional sections are most useful when they are combined with parameter entities. Suppose you have a fragment of a DTD that you include in several other DTDs. It looks like this:

<!ENTITY % UseBibliography "INCLUDE">

<![%UseBibliography;[

 <!ELEMENT Bibliography (BibEntry)*>

 . . .

]]>

If you define the parameter entity UseBibliography to be "IGNORE" before you include that DTD fragment, then the Bibliography element won't be defined. This is a bit like #ifdef in C, as mentioned above, except that there is no #else, and you can't combine conditions in an elegant way.

If you find yourself wanting more complex conditional processing, you should consider writing a pre-processor to build DTD fragments on the fly, or perhaps using some kind of XML Schema.

Notations

Notations are an XML feature not used in this book; they let you define a non-XML Entity, and say it's a JPEG or PNG image, or an MP3 file, or whatever. This should really be done with MIME Content Types instead in most cases.

Namespaces

Namespaces are a way to associate XML elements with external authorities. Each authority is a unique string (it's supposed to be a URL, but no-one has defined what resource might be found at that location!). The idea is that you associate a Prefix with a URL (or URI if we are being pedantic). Here is an example:

<Bibliography xmlns:bib="http://www.holoweb.net/xml/namespaces/bib1.3/">

 <bib:entry>

 <bib:a>Quin, Liam</bib:a>

 <bib:a>Graham, Ian. S.</bib:a>

 <bib:t>The XML Specification Guide</bib:t>

 </bib:entry>

</Bibliography>

It is possible to specify a default namespace, so that (for example) all a elements within a Bibliography would by default be for Author, and not the HTML Anchor element, even if the rest of the document used the HTML Namespace.

This is pretty powerful, and later specifications such as XSL (see under Style Sheets below) use it heavily.

Although XML 1.0 did not include Namespaces, they are already being used heavily; the specification is at http://www.w3.org/ under XML.

Style Sheets

At the time of writing, there are two main ways of turning an XML document into something a human could look at, with fonts, colours and dancing hamsters. They are Cascading Style Sheets and the XML Style Language (XSL) respectively.

This book isn't really about style sheets; if you want to know more about them, go to http://www.w3.org/ or see the Resource Guide at the end of this book for further pointers. Style sheets are supported in some form or other by most SGML, XML and even HTML browsers.

Exercises

You may want to test your knowledge a little; try typing in one of the Poetry examples and getting it to work with Mozilla (http://www.mozilla.org/) or Internet Explorer 5 or later.

Write a DTD fragment to represent tables, and test it.

Extend your sample table DTD to handle spanned rows and columns, table headings and footers. Make the content model of a cell a parameter entity as shown.

Read about other XML DTDs on the web, such as the Text Encoding Initiative's DTD for representing academic texts, or an e-commerce DTD. The best way to learn about XML is to do it!

_1001522987.doc
[image: image1.png]Fiery red

= Luthien

— = < Chestnut

