Chapter 3

Just Enough SQL

If you have not used SQL before, or are not familiar with relational databases, you may find this short chapter helpful. The chapter is split into two halves. The first half is an introduction to SQL and relational databases; the second half is a worked example. If you already understand Third Normal Form, SELECT and JOIN, you can skip the first half this chapter. The example database in the second half, BookWeb, is used in other chapters, and you will probably find it useful to give it at least a quick glance.

Introduction to Relational Databases

This section introduces the basic concept behind a relational database. It is, of course, an over-simplification.

The basic idea

Relational databases store tables of data. Here is a typical example, used perhaps by a schoolteacher who has difficulty in keeping track of which pupil is which:

Pupil
Name
Height (cm)
Hair
Eyes
Age
Gender
Mark

1
Andrew
96
Brown
Brown
12
M
45

2
Julia
112
Blonde
Green
11
F
61

3
Simon
120
Fair
Blue
12
M
81

4
Joy
?
Green
?
11
F
0

5
Alan
110
Black
Brown
11
M
79

6
Dawn
106
Red
Green
12
F
94

We don't have Joy's height or eye colour yet, perhaps because she only joined the class yesterday.

The main characteristics of this table are:

· It has lots of small pieces of information;

· The information in the cells is atomic -- a single number, for example, not both a height and a weight;

· Every row of the table is more or less complete: every column heading certainly applies to everyone in the table, and there are not many missing entries.

This is the kind of data traditionally associated with a relational database. In some ways, you could think of a database as a sort of glorified spreadsheet.

Properties of Objects

Another way to look at the information in that table is that it describes a number of schoolchildren: a child has an age, a hair colour (although Joy has been playing with dye I think!) and a test score.

We could draw a diagram, like this:

[image: image1.png]Pupil

Name
Height
Hair
Eyes
Age
Gender
Mark

This notation is used in a standard database Entity Relationship Diagram to show an "entity". Since XML uses the term "entity" to mean something different entirely, this book generally refers to a database entity as an object, but you'll see them called entities if you read anything about databases or SQL.

The heading, Pupil, names the entity, or object, and the remaining field give attributes.

You sometimes see more detail in entity relationship diagrams; the next figure also shows the types of the attributes.

[image: image2.wmf]
There is a difficulty here. In implementing this object as a relational database table, I have used a numerical ID to identify each pupil. This lets me refer to the pupils reliably. Some methodologies include the ID in the diagram, and some don't. I have omitted it, but I now have nowhere to put the name and type of the attribute, and for this reason it's more often shown.

A more important difficulty is that this notation muddles up the implementation (for example, the fact that I am using a singly byte to store Gender (male/female/asexual/intersexed/other) with the design (the fact that people generally think of themselves as having a particular gender, and that we wish to capture that information).

For the rest of this book, we'll use the simpler form of the diagram.

Relationships Between Objects

 The main raison d'être of a relational database is not simply to store data, but rather to help people (that's us!) manage the relationships between different sorts of information.

Databases talk about relationships in two ways: the kind of relationship, and its cardinality.

Let's draw a slightly more complex example, so we can talk about some of the objects and relationships found in it. Figure 1 shows an entity relationship diagram for a database representing books.

[image: image3.wmf]
Figure 1: Books and Publishers

Types of Relationship

A book has a title; the title is an attribute of the book. A book also has a Publisher, but we have modelled a publisher as a separate object.

The relationship between a book and a publisher is published. That is, the publisher published the book.

The relationships are named; we will return to this concept in Part 5, when we discuss Metadata and Link Databases.

Cardinality

A book has exactly one publisher (in our model, although this is not true in real life, where a single edition of a book has one or more publishers). One publisher, though, might publish more than one book, and almost certainly does in order to stay in business! The relationship is one publisher publishes many books, and is thus a one-to-many relationship. The crow's-foot on the line connecting the two boxes shows this.

The relationship between a book and its title is one-to-one. A one-to-one relationship is the only one that can be represented as either an attribute or a separate table. A one-to-one relationship between two separate objects is drawn as a straight line with no feet at the ends.

The relationship between authors and books is a many-to-many relationship, because a book might have multiple authors, and an author might write multiple books. This relationship is drawn with a crow's foot at each end of the line.

This relationship must be represented as a separate database table; there is an example of such a table, Wrote_tbl, in the BookWeb database example at the end of this chapter.

Because cardinality affects the layout of a database, it's important to get it right.

The Structured Query Language

The Structured Query Language, commonly known as SQL, is a language for interacting with a database. You can pronounce it as three separate letters or as "sequel" if you prefer.

SQL came from IBM in the late 1970s and early 1980s, but the main version in use today is that defined by the International Organisation for Standards (ISO, not an acronym). ISO SQL is commonly called SQL/92, although there have been revisions since then.

You can use the Structured Query Language in a number of ways. The examples in this chapter mostly use a standalone SQL interpreter called mysql. This is a program for Unix (including Linux) that reads SQL commands, or statements as you type them, and sends them to a database.

In later chapters we show SQL embedded in Perl, C or Java programs.

Other Tutorials

If you have installed MySQL, there is a tutorial included in the manual; look in /usr/doc/MySQL-3.22.25, or whatever version you have installed, for manual.html.

There are also quite a few SQL tutorials on the Web, and there are some books given in the Resource Guide at the back of this book.

The purpose of the tutorial in this chapter is to get you started, or, if you've done a little SQL before, to act as a reminder.

Creating a Database

We had better start by creating a database to work with. It'll be an empty database at first, of course. Although this chapter is written for MySQL, almost everything except creating a database uses standard SQL. If you're not using MySQL, you may need to do something different here.

You may need to create the database by connecting as the database administrator. The default administrator name for MySQL is root, although this has nothing to do with the root user on Unix or Linux.

NOTE: in this and other examples, $ is my Unix shell prompt, and bold text is what I typed. Most SQL statements can be entered in either UPPER or lower case.

$ mysql -h localhost -p -u root
Enter password: enter your password here
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2 to server version: 3.22.25

Type 'help' for help.

mysql> create database books;
Query OK, 1 row affected (0.00 sec)

mysql> quit
$

You can also use the mysqladmin command to create a database:

$ mysqladmin -u root -p create boys
Enter password:

Database "boys" created.

$

This is especially convenient if you need to be the database administrator to create a database, but a regular user in order to work with it.

Deleting a database

If you made a mistake and created a database with the wrong name, or if you've finished working with a database, you can delete it. Deleting a database removes all the tables and associated data. There is no undelete command, so you must be very careful before doing this.

$ mysqladmin -u root -p drop boys

Enter password:

Dropping the database is potentially a very bad thing to do.

Any data stored in the database will be destroyed.

Do you really want to drop the 'boys' database [y/N]

y

Database "boys" dropped

$

It's also possible to use the SQL command drop database bookies; but this will delete the database without warning, so it's best not to get into the habit of using it!

The sidebar shows the output of "mysqladmin -?", to give you an idea of the sorts of thing you can do with it.

MySQL Administration

The mysqladmin command has the following options:

$ mysqladmin -?
mysqladmin Ver 7.11 Distrib 3.22.25, for pc-linux-gnu on i686

TCX Datakonsult AB, by Monty

This software comes with NO WARRANTY: see the file PUBLIC for details.

Administer program for the mysqld demon

Usage: mysqladmin [OPTIONS] command command....

 -#, --debug=... Output debug log. Often this is 'd:t:o,filename`.

 -f, --force Don't ask for confirmation on drop table. Continue.

 even if we get an error.

 -?, --help Display this help and exit.

 -C, --compress Use compression in server/client protocol.

 -h, --host=# Connect to host.

 -p, --password[=...] Password to use when connecting to server.

 If password is not given it's asked from the tty.

 -P --port=... Port number to use for connection.

 -i, --sleep=sec Execute commands again and again with a sleep between

 -s, --silent Silently exit if one can't connect to server.

 -S, --socket=... Socket file to use for connection.

 -t, --timeout=... Timeout for connection.

 -u, --user=# User for login if not current user.

 -V, --version Output version information and exit.

 -w, --wait[=retries] Wait and retry if connection is down.

Where command is a one or more of: (Commands may be shortened)

 create databasename Create a new database.

 drop databasename Delete a database and all its tables.

 extended-status Gives an extended status message from the server.

 flush-hosts Flush all cached hosts.

 flush-logs Flush all logs.

 flush-status Clear status variables

 flush-tables Flush all tables.

 flush-privileges Reload grant tables (same as reload)

 kill id,id,... Kill mysql threads.

 password new-password Change old password to new-password

 ping Check if mysqld is alive

 processlist Show list of active threads in server

 reload Reload grant tables

 refresh Flush all tables and close and open logfiles

 shutdown Take server down

 status Gives a short status message from the server

 variables Prints variables available

 version Get version info from server

[@@end of sidebar; as long as tabs and linebreaks are preserved, you could use a proportional font instead if it made it fit better.@@]

SQL Data Types

A database contains one or more tables, and these tables contain the data. When you create a table, give it a clear name that's easy to remember without looking anything up elsewhere. It's tempting to have a piece of paper with a sketch on it, number the boxes, and create tables like t1, t2, t3; you'll curse yourself for doing this when you're trying to debug errors in your SQL queries later, though.

When you create a table, you give both a table name and a list of columns. Each column has a name and a type. Every field -- that is, every entry in the column -- must be of the correct type. You can't put a person's name into a column that's defined as an Integer, for example. Table 1 summarises the most common types you can use.

Table 1: SQL Data Types

Type
Description
Example
Sample Values

INT, INTEGER
A whole number
FridgeCount INT(2)
01, 02, 36

FLOAT
A floating point number; you can specify length and the number of decmal places, as in the example.
FLOAT Height(4,3)
0.6, 9999.99

YEAR
A year between 1901 and 2155
RenewalDue YEAR
1936

CHAR(len)
A fixed length string of text; values are padded with spaces or truncated as necessary.
City CHAR(14)

"Lower Lemingto", "London "

VARCHAR(len), VARBINARY(len)
A case-insensitive text string or binary data; values can vary in length up to len bytes, which cannot be more than 255
City VARCHAR(120)
"Lower Lemington", "London"

TEXT, BLOB
a text or binary field (respectively) that can be up to 65536 bytes long. Although this data type is widely supported, it's not very useful.

LONGTEXT, LONGBLOB
a text or binary field that can be up to 4Gbytes in size. There may be a slight overhead in size for each of these (for mySQL, a LONGTEXT field uses 4 bytes to store the length in addition to the data).

ENUM
One of an enumeration, or an integer, or possibly NULL
Gender ENUM("male", "female", "trans")
1, "male"

Modifiers

There are a number of modifiers you can use to change the meaning of the basic data types. Some of these are as follows:

[@@ help! how do I format this? @@]

NOT NULL

A value must always be supplied for this item. For example, in

PlaceOfBirth VARCHAR(255)

a row could omit PlaceOfBirth; mySQL will show this as \N

If instead you use

PlaceOfBirth VARCHAR(255) NOT NULL

then every row must provide a value for PlaceOfBirth.

DEFAULT something
If no value is given for this column when you insert a row, the default value something will be used.

UNIQUE

The value for this field must be different in each row. You should probably combine this with NOT NULL for portability.

NOT NULL UNIQUE PRIMARY KEY

The field will be indexed; in addition, this field can be used to identify a row in the database. There is a more formal meaning, but that would be more than Just Enough SQL.

REFERENCES table
The field refers to another table. Although mySQL does not implement this, other databases (such as Oracle) do. See the description of UPDATE and DELETE below.

Creating A Table

Now that we've read about data types, let's create a table:

$ mysql -p
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 12 to server version: 3.22.25

Type 'help' for help.

mysql> use tutorial;
Database changed

mysql> create table pupils (
 -> Name VARCHAR(30) NOT NULL PRIMARY KEY,
 -> Age INT,
 -> Height INT,
 -> Hair VARCHAR(15),
 -> Marks INT
 ->);
Query OK, 0 rows affected (0.31 sec)

mysql>

Notice that you can spread an SQL statement out over several lines, up to the ending semicolon (;).

Inserting data

mysql> insert into pupils VALUES ('Max', 19, 178, 'reddish', 15);
Query OK, 1 row affected (0.34 sec)

mysql>

We can also load data from a file:

mysql> LOAD DATA LOCAL INFILE 'authors.tbl' INTO TABLE Author_tbl
 FIELDS TERMINATED BY '|'

 (LastName, FirstNames, Sortkey, Author_id);

The file "authors.tbl" has to be an ASCII (UNIX-format) text file with | between the fields, like this:

Abbott|Edwin A.|Abbott, Edwin A.|10

Adams|Douglas|Adams, Douglas|20

Adams|Richard|Adams, Richard|30

Aldiss|Brian|Aldiss, Brian|40

Allegro|John|Allegro, John|50

Amis|Kingsley|Amis, Kingsley|60

Anderson|Poul|Anderson, Poul|70

Asimov|Isaac|Asimov, Isaac|80

Asprin|Robert|Asprin, Robert|90

Bailey|Paul|Bailey, Paul|100

Ballard|J. G.|Ballard, J. G.|110

Banks|Iain|Banks, Iain|120

Banks|Iain M.|Banks, Iain M.|130

Bannon|Mark|Bannon, Mark|140

Barker|M.A.R.|Barker, M.A.R.|150

Bates|Brian|Bates, Brian|160

Baudino|Gael|Baudino, Gael|170

Bayley|Barrington|Bayley, Barrington|180

Beagle|Peter|Beagle, Peter|190

The commands to create the BookWeb database used in later chapters are given in the Worked Example later in this chapter; the data is available on the CD-ROM and on the Web Site for this book.

Using SELECT to print an entire table

You can print all or part of a table using the SQL SELECT statement:

mysql> select * from pupils;
+------+------+--------+---------+-------+

| Name | Age | Height | Hair | Marks |

+------+------+--------+---------+-------+

| Max | 19 | 178 | reddish | 15 |

+------+------+--------+---------+-------+

1 row in set (0.00 sec)

mysql>

In the next section we see how to print out only certain rows that are of interest.

Using WHERE to limit the query

Using SELECT with WHERE is what makes relational databases start to look interesting. Let's print all authors whose names start with a "C":

mysql> select * from Author_tbl where LastName LIKE 'C%';
+-----------+-------------+--------------+----------------------+

| Author_id | LastName | FirstNames | Sortkey |

+-----------+-------------+--------------+----------------------+

| 390 | Cabell | James Branch | Cabell, James Branch |

| 400 | Callenback | Ernest | Callenback, Ernest |

| 410 | Cameron | Eleanor | Cameron, Eleanor |

| 420 | Campbell | John W | Campbell, John W |

| 430 | Campbell | John W. | Campbell, John W. |

| 440 | Campbell | Marion | Campbell, Marion |

| 450 | Campbell | Ramsey | Campbell, Ramsey |

| 460 | Capek | Karel | Capek, Karel |

| 470 | Card | Orson Scott | Card, Orson Scott |

| 480 | Carroll | Lewis | Carroll, Lewis |

| 490 | Carter | Angela | Carter, Angela |

| 500 | Carter | Lin | Carter, Lin |

| 510 | Chalker | Jack L. | Chalker, Jack L. |

| 520 | Chant | Joy | Chant, Joy |

| 530 | Churchward | James | Churchward, James |

| 540 | Clark | Douglas W. | Clark, Douglas W. |

| 550 | Clarke | Arthur C. | Clarke, Arthur C. |

| 560 | Clayton | Jo | Clayton, Jo |

| 570 | Clute | John | Clute, John |

| 580 | Comyns | Barbera | Comyns, Barbera |

| 590 | Coney | Michael | Coney, Michael |

| 600 | Constantine | Storm | Constantine, Storm |

| 610 | Cook | Robin | Cook, Robin |

| 620 | Cooper | Edmund | Cooper, Edmund |

| 630 | Cooper | Louise | Cooper, Louise |

| 640 | Cowper | Richard | Cowper, Richard |

+-----------+-------------+--------------+----------------------+

26 rows in set (0.01 sec)

mysql>

SQL supports quite complex expressions in a WHERE clause. Although this book isn't a SQL reference, Table 3 gives some of the expression syntax and some examples.

Table 3: SQL Expressions

Expression
Result

name
The value of the corresponding field; for example, "IS" in SELECT * from Author_tbl where ID < 100

e + e, e - e
the sum (or difference) of two expressions

e * e, e / e
multiply or divide two fields

NOT e
1 if e is zero, and zero otherwise

e OR e
1 (true, if you will) if either expression is non-zero

e AND e
1 if both expressions are non-zero, and 0 otherwise

e = e
1 if the two expressions are equal, and zero otherwise

e < e
1 is the left-hand expression is less than the right-hand one; the other relational operators include <=, >= ,> and <> (or != if you prefer).

REGEXP s
true if the field is a text (or vartext) field that matches the Regular Expression s; this is a mySQL extension to SQL.

LIKE pattern
true if the field matches the given pattern, in which "%" is a wildcard that matches any sequence of characters (like the "C%" in the example above), and _ matches a single character.

Returning multiple columns

You can return any number of columns in a SELECT clause, and you can give them names for use within the expressions, wither to save typing or to make the output headings easier to read.

Here is an example from the BookWeb application described in the last chapter of this part of the book:

SELECT

 Author_tbl.LastName as Author,

 Author_tbl.FirstNames as firstName,

 Book_tbl.Title as Title,

 Book_tbl.Book_id as Book_id

FROM

 Wrote_tbl, Author_tbl, Book_tbl

WHERE

 Author_tbl.LastName REGEXP "Tolk[ei]+n"

 AND Wrote_tbl.Author_id = Author_tbl.Author_id

 AND Wrote_tbl.Book_id = Book_tbl.Book_id

 AND Author_tbl.Author_id = Wrote_tbl.Author_id

;

The result of this query is a table with four columns: Author, firstName, Title and Book_id. These values did not originally come from the same table, but from the tables Author_tbl and Book_tbl.

Joining and Sorting

The complex WHERE example just described is an example of an Inner Join. The idea of a join is that you create a new table by taking rows of several other tables that match a WHERE clause. We won't need more complex joins than that in this book.

You can sort output with the ORDER BY clause to SELECT; the optional DESC modifier sorts things in descending order:

mysql> Select * from Author_tbl
 -> where LastName LIKE 'C%'
 -> order by SortKey;
Using UPDATE and DELETE to change data

You can change values in a table with the UPDATE statement:

UPDATE Author_tbl

SET firstNames = "Michael Geratrix"

WHERE Author_id = 590;

will change

590 | Coney | Michael | Coney, Michael

to

590 | Coney | Michael Greatrix | Coney, Michael

You can also delete rows (but only entire rows; if you want to delete a single field, set it to NULL):

DELETE FROM Author_tbl WHERE Author_id = 590;

and Michael Coney is no longer listed.

If you try this on the sample BookWeb database, you may find that there are books that were written by Michael Coney. The Books_tbl contains a field created with the REFERENCES Author_tbl modifier, so that the database "knows" that you can't delete an author if there are books referring to that author. In fact, mySQL doesn't perform this checking at the time of writing, and since it lacks transaction support, it might not support this sort of constraint for quite some time. Other databases often do support this sort of constraint checking; it's part of referential integrity checking, which makes sure that the database "makes sense".

Normal Forms and Database Design

Two important principles in designing a database is to avoid duplication of data, and to store absolute rather than derived values.

The example given at the start of this chapter stores an age, when a birth date would be better.

Similarly, storing a numeric ID for an author, and then using that ID in another "Wrote" table to say, this author wrote this book, is much better than putting the author name in the Wrote table. That way, a typing error is less likely to lead to a broken and hard-to-fix database.

Database people talk about putting a database into Normal Form.
First Normal Form

To describe Normal Forms, we must go back to looking at a database as representing objects with attributes. A book, for example, is an object, and the title an attribute of that book. Proper relational database terminology calls the objects entities, but that's too confusing in an XML book.

A database in First Normal Form does not have any attributes with repeating values, and a unique key identifies every object. For example, a book may have two authors, but you can't directly represent that in a normalised database. Repeating data (like this) is a definite no-no:

The Descent of Anansi | Larry Niven

The Descent of Ananxi | Steven Barnes

Instead, we need to store separate tables to represent Book and Author objects. A Book has a single title, and an Author has a single name. We then use a separate table (Wrote_tbl) to represent the relationship:

Author_ID | Name
1 | Larry Niven

2 | Steven Barnes

Book_ID | Title
1 | The Descent of Anansi

Then the Wrote Table relates the two:

Author_ID | Book_ID
1 | 1

2 | 1

This tells us that Book 1 was written by authors 1 and 2.

The Wrote table means we no longer have duplicated attribute data, and therefore don't need to worry abut which version is correct (look carefully at Anansi and Ananxi above).

Second Normal Form

In Second Normal Form, all attributes of an object depend entirely on the object's identifying attribute.

Translated into English, this means that you shouldn't store a Publisher's Name in the Book table, because the same publisher might have published more than one book. The book title is different for every book (unless we have two books with the same title, but that sort of coincidence is acceptable because the titles still refer to different books). The Publisher is not different for every book, and so it should be in a separate table with a Publisher_ID stored in the Book table to refer to it.

A database in Second Normal Form must also already be in First Normal Form.

Third Normal Form

In Third Normal Form, a database is in Second Normal Form. In addition, no non-identifying attributes depend on any other non-identifying attributes.

In our Author table, the ID is the identifying attribute. Suppose we wanted to record the city in which each author lived, along with the time zone so we don't telephone the author in the middle of the night.

The time zone depends on the city: if an author moves, we have to update both fields. This means we have a possible integrity problem we could update one field and not the other.

In Third Normal Form, we use a separate table for the City with its time zone, and give it a City ID:

City_ID | Name | TimeZone
1 | Toronto | EST

2 | Swansea | GMT

3 | San Francisco | PST

Now in our Author table, we refer to these by ID:

Author_ID | Name | City_ID
1 | Larry Niven | 3

2 | Daffyd Jones | 2

If your database is in Third Normal Form, the chances are good that you have avoided the most common errors, and that your queries can have a reasonable chance of running efficiently.

Worked Example: BookWeb

This section presents a simple example that we'll use in the rest of the book. The BookWeb database represents science fiction and fantasy novels (or any other sorts of fiction), and keeps track of names of characters mentioned in those books.

Later, we will add more features to this, and integrate it with a text retrieval package. The completed application is running on http://www.holoweb.net/~bookweb/ and the source is also available there.

[@@ or will be, the system is still being configured as I write @@]

Start with a book...

A book has a title, of course, and a publisher, and a publication date. We could add a page count, perhaps, and an author. Since many books share a single publisher, we'll make that a separate table.

So our first attempt looks like this:

[image: image4.wmf]
Normalise

Our database design has some problems. The first is that an author can write more than one book. We don't want to type the author's name in more than once, because if we made a mistake, or put "Michael G. Coney" in one place and "Michael Greatrix Coney" in another, the database would think they were two different people.

So we need to make an Author Table:

[image: image5.wmf]
This still isn't quite right, as you might have guessed. One book might have two authors -- Ian S. Graham and Liam R. E. Quin wrote The XML Specification Guide, and although that strictly speaking isn't sold as fiction, there are plenty of science fiction books with more than one writer involved.

In order to implement the many-to-many relationship between author and book, we need a separate table, Wrote_tbl, in which each row simply contains an assertion, "This author (ID) wrote this book (ID)". If there are multiple rows with the same author, that author wrote more than one book. If there are multiple rows with the same book ID, that book had multiple authors. To correct the diagram, get out a pencil and draw a crow's foot on the right-hand end of the Book-Author relationship, and write "Wrote" over it.

Names and Rôles

When I started to develop BookWeb, it was because I wanted to be able to keep a database of names of characters and places in books, and to search for them.

A book can mention any number of names, and a name can appear in any number of books. Bilbo Baggins the Hobbit appears in several books, and so does Rand al'Thor. We need another table to represent the many-to-many relationship between a name and a book, but this time, I have added an extra field, Rôle, to the table. This is so that I can say that Bilbo is the protagonist in The Hobbit and appears in The Lord of the Rings (where the protagonist is surely Frodo Baggins). †

Figure XXX shows the final diagram:

[image: image6.png]Publisher Book Book\Web Edit Date: 11/09/99 7:09:30 PM
Name Title Represents characters and places that appear in books
Country YearFirstPublished
City PageCount
Published —{Publisher
Traget: MySQL Rev: 1.3 Creator: Liam Quin
Wrote | % Filename: BookERD Company: Barefoot Computing
Author Appears In
LastName Name Reference
FirstNames ‘ i
SortKey Name S o= Book
DateOfBirth Type (person/place...) Rol Name
Citizenship ~Role Role

† Note on the word "Rôle": this is the usual English spelling; the circumflex may have been omitted from some of the examples because of production problems, and has been omitted from the table names in case some SQL databases use US ASCII for their names.

Creating the BookWeb database in mySQL

The following script is available online on the book web site at http://www.holoweb.net/~bookweb/ and can be freely downloaded. You can also play with the sample database there. If yuo are typing this in from a book, sample input files are given after the script, and you'll need those too.

create a "book" database

#

Copyright, Liam Quin, 1999

see the Barefoot License at http://www.holoweb.net/~bookweb/ or in

the resource guide of this book for copying restrictions.

#

If you have a mySQL account emily and your computer is called crispin, you can type the script into a file called bkcreate and then run it like this:

$ mysql -h crispin -u emily -p < bkcreate
If you are using Oracle, you may need to change VARCHAR to VARCHAR2 everywhere.

Let's start by creating the database. You may need to get the database administrator to do this for you, and then grant you access to it; see the section on Creating a Database above, and the documentation for your database, if necessary.

CREATE DATABASE books;

USE books;

#

First, an author
CREATE TABLE Author_tbl (

 # identify the author; the Author_id refers to the Author table;
 # note that two authors with the same name might be entirely
 # different people.
 Author_id INT NOT NULL PRIMARY KEY,

 LastName VARCHAR(35) NOT NULL,

 FirstNames VARCHAR(40),

 Sortkey VARCHAR(25)

);

Now load some authors
LOAD DATA LOCAL INFILE 'authors.tbl' INTO TABLE Author_tbl

 FIELDS TERMINATED BY '|'

 (LastName, FirstNames, Sortkey, Author_id);

#

Next, a publisher
CREATE TABLE Publisher_tbl (

 Publisher_id INT NOT NULL PRIMARY KEY,

 # name, e.g. Wiley, truncated if necessary because SQL,

 # unlike XML, is not really too happy about fields of

 # unrestricted length:

 Name VARCHAR(50)

);

load some publishers

LOAD DATA LOCAL INFILE 'publishers.tbl' INTO TABLE Publisher_tbl

 FIELDS TERMINATED BY '|'

 (name, Publisher_id);

#

Now a book and its attributes:

CREATE TABLE Book_tbl (

 # id: unique id for identifying each book
 # (ISBNs are not suitable as they reer to a specific edition)
 Book_id INT NOT NULL PRIMARY KEY,

 # title, truncated if necessary because SQL, unlike XML,
 # is not really too happy about fields of unrestricted length:
 Title VARCHAR(150) NOT NULL,

 # identify the publisher:
 Publisher_id INT REFERENCES Publisher_tbl(Publisher_id),

 # When the book was first published
 # we'd like to make it a DATE, but we usually only have

 # a year, not a day/month/year, so we just use a number:

 Date INT,

 # Number of pages in some particular unspecified edition.
 # We might use that to give thicker books bigger icons, perhaps.
 # Strictly speaking this might belong in an EDITIONS table,
 # but that's more detail than we need!
 Pages INT

);

load some books
LOAD DATA LOCAL INFILE 'books.tbl' INTO TABLE Book_tbl

 FIELDS TERMINATED BY '|'

 (Book_id, Title, Publisher_id, Date);

#

who wrote which book?
CREATE TABLE Wrote_tbl (

 Author_id INT NOT NULL REFERENCES Author_tbl,

 Book_id INT NOT NULL REFERENCES Book_tbl

);

load the relationship
LOAD DATA LOCAL INFILE 'wrote.tbl' INTO TABLE Wrote_tbl

 FIELDS TERMINATED BY '|'

 (Author_id, Book_id);

#

A character or place seen in a book
CREATE TABLE Name_tbl (

 Name_id INT NOT NULL PRIMARY KEY,

 Name VARCHAR(50) NOT NULL,

 # city|region|country|person|creature|plant|food|other
 Type CHAR(12) NOT NULL,

 Description VARCHAR(250)

);

load some names
LOAD DATA LOCAL INFILE 'names.tbl' INTO TABLE Name_tbl

 FIELDS TERMINATED BY '|'

 (Name_id, Name, Type, Description);

#

Where the name was referenced
CREATE TABLE References_tbl (

 Name_id INT NOT NULL REFERENCES Name_tbl,

 Book_id INT NOT NULL REFERENCES Book_tbl,

 # Record the rôle a particular name plays in a given book.
 # for example, Bilbo is "protagonist" in the Hobbit,
 # but in The Lord of the Rings he is secondary.
 Role VARCHAR(100) NOT NULL

);

load some references
LOAD DATA LOCAL INFILE 'references.tbl' INTO TABLE References_tbl

 FIELDS TERMINATED BY '|'

 (Name_id, Book_id, Role);

done -- now we can use the database!
Here are some sample files you can use if you don't want to use the ones on the Web Site.

[@@ if we do a CD-ROM the files can be on that, I already have them. Liam. @@]

authors.tbl

This file is greatly truncated; I have given you enough of "C" to get the 24 lines of output in the tutorial, and a few other authors used in other examples. The fields are lastName, firstNames, sorktKey, ID.

Abbott|Edwin A.|Abbott, Edwin A.|10

Adams|Douglas|Adams, Douglas|20

Benford|Gregory|Benford, Gregory|210

Brin|David|Brin, David|330

Cabell|James Branch|Cabell, James Branch|390

Callenback|Ernest|Callenback, Ernest|400

Cameron|Eleanor|Cameron, Eleanor|410

Campbell|John W|Campbell, John W|420

Campbell|John W.|Campbell, John W.|430

Campbell|Marion|Campbell, Marion|440

Campbell|Ramsey|Campbell, Ramsey|450

Capek|Karel|Capek, Karel|460

Card|Orson Scott|Card, Orson Scott|470

Carroll|Lewis|Carroll, Lewis|480

Carter|Angela|Carter, Angela|490

Carter|Lin|Carter, Lin|500

Chalker|Jack L.|Chalker, Jack L.|510

Chant|Joy|Chant, Joy|520

Churchward|James|Churchward, James|530

Clark|Douglas W.|Clark, Douglas W.|540

Clarke|Arthur C.|Clarke, Arthur C.|550

Clayton|Jo|Clayton, Jo|560

Clute|John|Clute, John|570

Comyns|Barbera|Comyns, Barbera|580

Coney|Michael|Coney, Michael|590

Constantine|Storm|Constantine, Storm|600

Cook|Robin|Cook, Robin|610

Cooper|Edmund|Cooper, Edmund|620

Cooper|Louise|Cooper, Louise|630

Cowper|Richard|Cowper, Richard|640

Niven|Larry|Niven, Larry|1620

Noon|Jeff|Noon, Jeff|1630

Zelazny|Roger|Zelazny, Roger|2360

Zindell|David|Zindell, David|2370

publishers.tbl

This version of the file has City field added to it; it's up to you whether to type in that field and add it to the example, or whether to leave it out of the data file.

Abacus||USA|10

Ace||USA|20

Arrow|London|UK|30

Avin Books||USA|40

Axolotl Press||USA|50

Bantam||USA|60

Dell||USA|70

Doubleday||USA|290

Futura||USA|80

Grafton|London|UK|90

Guild/Bantam||USA|100

Legend||USA|110

Methuen||USA|120

Millennium|London|UK|290

New Directions||USA|130

Orbit||USA|140

Pan||USA|150

Penguin|Oxford|UK|160

Picador||USA|170

Random Century||USA|180

Ringpull||USA|190

Signet||USA|200

Sphere||USA|210

Tor||USA|220

Unicorn||USA|230

Unwin||UK|240

Unwin Hyman||UK|250

Victor||UK|260

Victor Gollancz SF||UK|270

Women's Press||UK|280

book.tbl

This is, again, a very small extract. The notation "\N" is used to represent a NULL field; some databases may simply require that no data be present, or have some other mechanism. The last two fields, when not NULL, are the number of pages and the first publication date, respectively.

10|Flatland|\N|\N

20|Dirk Gently's Holistic Detective Agency|\N|\N

30|Life, the universe and everything|\N|\N

40|The Long Dark Tea-Time of the Soul|\N|\N

50|The Restaurant at the End of the Universe|\N|\N

990|Earth|60|1990

1000|Startide Rising|\N|\N

1010|The Postman|\N|\N

1020|The Practice Effect|\N|\N

1030|The River of Time|\N|\N

1040|The Uplift War|\N|\N

1050|Glory Season|\N|1993

1060|Otherness|\N|1994

1260|The Wonderful Flight to the Mushroom Planet|\N|\N

1270|The Moon is Hell|\N|\N

1280|The Thing|\N|\N

1290|The Dark Twin|\N|\N

1300|Ancient Images|\N|\N

1310|The Hungry Moon|\N|\N

1320|War with the Newts|\N|\N

1330|A Planet Called Treason|\N|\N

1340|Alvin Maker 1: Seventh Son|\N|\N

1350|Songmaster|220|1978

1360|Speaker for the Dead 1: Speaker for the Dead|220|1986

1370|Speaker for the Dead 2: Ender's Game|\N|\N

1380|Speaker for the Dead 3: Xenocide|220|1991

1390|Speaker for the Dead 4: Children of the Mind|220|1996

3220|The Wheel of Time 1: The Eye of the World|220|1990

3230|The Wheel of Time 2: The Great Hunt|220|1990

3240|The Wheel of Time 3: The Dragon Reborn|220|1991

4500|Protector|\N|\N

4510|The Integral Trees|\N|\N

4520|The Smoke Ring|\N|\N

4530|Pollen|190|1995

6170|Isle of the Dead|\N|\N

6180|Lord of Light|\N|\N

6190|The Dream Master|\N|\N

6200|Neverness|90|1988

wrote.tbl

[@@ TODO I need to trim this one so that the example works with the reduced data set -- Liam @@]

990|2820

2200|5880

2120|5700

2120|5710

1310|3600

50|140

2040|5600

2040|5610

1230|3320

1150|3130

1070|2970

1070|2980

1070|2990

920|2670

2370|6200

1560|4340

1560|4350

2290|6010

220|700

220|710

220|720

750|2270

670|1960

590|1580

590|1590

590|1600

590|1610

590|1620

590|1630

590|1640

590|1650

name.tbl

The fields here are ID, Name, Type and Description. Not all of these names are actually mentioned in books that occur in the sample given here.

0010|Ba'alzamon|person|One of the Forsaken, leading the forces of Darkness

0020|Dr Talos|person|

0030|Emereck|person|

0040|Flindarin|person|

0050|Foila|person|

0060|Jack|person|

0070|Jonas|person|

0080|Kim|person|

0090|Lan|person|Warder to Moraine

0100|Lanfear|person|One of the Forsaken, leading the forces of Darkness

0110|Mairelon|person|the wizard himself!

0120|Malito|person|

0130|Mat|person|a shepherd boy who likes tricks and gambling

0140|Minathlan|person|

0150|Moraine|person|An Aes Sadai who dedicated her life to finding and manipulating the Dragon Reborn

0160|Nessus|person|

0170|Egwene|person|a girl from the Two rivers

0180|Nynaeve|person|a bad-tempered unpleasant shrew from the Two Rivers

0190|Perrin|person|a blacksmith who gains a liking for wolves.

0200|Rand al'Thor|person|Just a farmer's boy. Or possibly the Messiah.

0210|Severian|person|The executioner, or lictor, in his meanderings

0220|Tar Valon|city|The home of the White Tower, where the Aes Sadai train their novices to manipulate the world

0221|Colin|Just a schoolboy

0222|Susan|Just a schoolgirl

0223|Fenodyree|a dwarf

0224|Durathror|One of the huldrafolk

0225|Atlendor|

0226|Gowther|A Lancashire farmer

0227|The Morrigan|spellweaver|A Witch

references.tbl

Finally, which names appear in which books

[@@ TODO: check these form a useful subset. I'd like maybe 3 or 4 pages of data at most, people will sue us for tendonitis otherwise! And the data will be on the web site, and can be on the CD. @@]

0010|3220|Adversary

0010|3230|Adversary

0010|3240|Adversary

0020|6030|Secondary

0020|6040|Secondary

0030|6030|Advisor

0040|6030|Protagonist

0050|5940|Secondary

0060|6100|Companion

0070|5920|Secondary

0080|6100|Protagonist

0090|3220|Secondary

0090|3230|Secondary

0090|3240|Secondary

0090|3250|Secondary

0090|3260|Secondary

0100|3230|Adversary

0100|3240|Adversary

0100|3250|Adversary

0100|3260|Adversary

0110|6100|Central

0120|5940|Secondary

0130|3220|Central

0130|3230|Central

0130|3240|Central

0130|3250|Central

0130|3260|Central

0140|5970|Place

0150|3220|Advisor

0150|3230|Advisor

0150|3240|Advisor

0150|3250|Secondary

0150|3260|Secondary

0160|5940|Secondary

0170|3220|Secondary

0170|3230|Secondary

0170|3240|Central

0170|3250|Central

0170|3260|Protagonist

0180|3220|Secondary

0180|3230|Secondary

0180|3240|Central

0180|3250|Central

0180|3260|Protagonist

0190|3220|Central

0190|3230|Central

0190|3240|Central

0190|3250|Protagonist

0190|3260|Central

0200|3220|Protagonist

0200|3230|Protagonist

0200|3240|Protagonist

0200|3250|Central

0200|3260|Secondary

0210|6030|Protagonist

0210|6040|Protagonist

0210|6050|Protagonist

0210|6060|Protagonist

0220|3220|Visited

0220|3220|Visited

0220|3220|Described

0220|3220|Visited

0220|3220|Visited

Exercises

Get the sample database working in whatever database you use. Try to construct queries to find which names were referenced in which books.

Find a tutorial for the database you have, and work through it.

If you are using the code supplied with this book, get the BookWeb sample application working.

The BookWeb sample is not fully normalised. What needs to be done to put it into Third Normal Form?

How would you model the fact that characters in books inhabit (often imaginary) lands?

