Chapter 8

XML Repositories and Databases

In Part One of this book we saw how to read an XML document with a view to extracting information to store in a relational database. In this chapter we consider the problem of storing a document in a database in such a way that it can be extracted again later in whole or part as well as being the subject of database queries.

There are several ways to do this; choosing the most suitable for any given application and environment is not always easy. To help you make the choice, this chapter starts with some sample scenarios, giving a sample strategy for each of them. Chapter Nine describes how to implement each strategy in more or less detail, and is aimed at programmers.

Sample Scenarios

There are, of course, a great many possible scenarios in which databases are used; the ones given here are intended to be more or less representative of a fairly wide range of applications, and are also carefully chosen to illustrate the various different issues the come up during implementation. It may be useful for you to outline your own situation just as these samples are described, as then the various strategies for addressing these scenarios will seem more directly applicable to your needs.

Characteristics

Some Characteristics are given that are typical of each scenario, and in some cases there are also Examples and pointers to implementation strategies and notes in Chapter Nine. The main characteristics are as follows:

Resource Discovery

This term is traditionally used to refer to the problem of finding things. If the single biggest problem you are trying to solve is that people can't find documents, consider a text retrieval system or the Central Access scenario below. Sometimes other requirements only emerge after you solve the most pressing problems.

Co-operation and Communication

The needs of a solitary worker differ from the needs of ants in a colony; the most important aspect of this characteristic is often how well the software supports the business or work processes in an organisation.

The more important this aspect is to you, the more likely you are to lean towards using a database.

Update

In most environments, documents are read tens, hundreds or even thousands of times more often than they are changed. But that isn't always true. An environment in which saving a document is complex or slow may be perfectly acceptable at one end of the spectrum and entirely outrageous at the other.

Historical Archiving

If you need to keep track of old versions of information, or to be able to compare versions, you will need to think carefully about a lot of related issues. Configuration management, access control, update, compound objects that are comprised of many interrelated files, and even treatment of white space are all fraught with peril.

Configuration Management

Since XML documents are potentially comprised of multiple entities or files, you will need to keep track of sets of things, not just things. If you do versioning, you may need to track relationships that change too (what if the DOCTYPE declaration was changed in a document, so that it used a different DTD in a particular version? What if that DTD has changed in the mean-time?).

Access Control

Any organisation with more than one person must decide who can do what with what to whom. Er, to what. If you are putting up a commercial encyclopaedia for pay-per-use viewing on the Internet, you'll need fairly secure access control. If you are a group of writers working on a novel at a university, maybe you're more concerned with preventing two people working on the same chapter at the same time.

Examples

The examples have been chosen to highlight the fact that the categories are blurred: if you take a few moments to think about them, you'll probably decide to move them to other scenarios or to ask why they didn't choose some other solutions. They are all based on real examples, and often the reasons were political.

Central Access

You need to make sure that everyone who needs to do so can find any document, without having to search users’ home directories or networked computers.

In this scenario, searching is likely to be important. People might need to find a document but not know the document name; they need to be able to search for all documents written by Simon Whitehead between 1994 and 1996 that contain “Helicopter” in the title. For some applications, the ability to find all documents containing the phrase “painting the blades green” might also be useful. If you make it a lot easier for people to access information, you change their world, either because they waste less time looking through musty filing cabinets in tiger-infested basements, or because they find things that they would never otherwise have seen.

A browsing interface, perhaps where documents are arranged into categories and sub-categories, as often useful, and easy to set up with a web server such as Apache.

Characteristics:

The following characteristics suggest the suitability of providing central access to a shared repository:

Resource Discovery: locating information

Co-operation and Communication: sharing notes and information

Update: documents are read much more often than they are changed, and are usually only changed by the author.

Example: Research Project

A university research project places all the design documents on a spare i486 PC running FreeBSD and Apache; they use the same system to run a mailing list for the project, and archives of the list are made available with the free HyperMail software. Later, as the project gets more popular, they run an Internet Relay Chat (IRC) server on the machine, and use it for online meetings; the logs are posted on the web site.

Example: Design Agency

A small design agency has a team of five people working on a promotional campaign to explain to people living in a small city how health care changes will affect them. The team uses a Macintosh ftp server to share their PhotoShop, Gimp and Adobe Illustrator design sketches, and their notes.

Shared Authoring

You might, for example, have several people working on writing and maintaining a large XML document, such as an aircraft manual or a procedure for transporting tigers over long distances by sedan chair. You need to make sure that everyone can find out which parts are already written, and also that no two authors work on the same section at the same time.

The simplest way to do this might be to have everyone agree to share a single folder on a networked file server. If everyone uses tools that lock files while they are being worked on there may not be too much confusion, but this somehow feels very insecure.

In fact, there are a number of problems: someone could easily delete a file by mistake, and two people could create a new file of the same name at the same time. If you use file permissions to control this, you start increasing the overhead and complexity of managing the environment.

None the less, simple and free solutions to real problems are very valuable, and if this is your scenario, you should consider carefully whether you need a database. If you decide that you do, it might be because the fragility of shared files is unacceptable, or because file names aren’t good enough for searching, or perhaps because you have too many documents to manage that way.

Characteristics:

Resource Discovery: locating information

Co-operation and Communication: sharing notes; up to date status information

Access Control: document locking for exclusive access.

Update: documents are changed frequently, and are often changed by people other than the author, or by a group of authors.

Example: Software Production

A small software company has about a dozen programmers who tend to arrive in the late morning and work for eighteen hours at a stretch, pausing only to eat pizza. They communicate with each other using electronic mail and Internet Relay Chat, but to make sure two people don't overwrite the same file, their source is held in a central CVS repository on a central SPARC server. The CVS system also lets them compare differences between any two versions of any source file, and they can revert to older versions.

Their documentation team tends not to be working at 3am when the best discoveries are made, so the programmers use email to let the documentation and support teams know about changes that had to be made, or to ask about new ideas. The documentation is also kept in CVS so that the programmers can look at it easily but not change it.

After a few years, the code became rather large, and they started to use a text retrieval system to keep an automatic up-to-date index so they could search the software easily. The GNU mkid tools are one example of such software that's freely available.

Example: Aircraft Company

An aircraft company has over 100,000 pages of documentation for a small aircraft; much of this is mandated by complex safety regulations. They write the documentation in XML and store individual chapters as objects in an Object Oriented Database, using a relational database to store metadata such as authoring information, dates, versions and "effectivity" (where different customers order 'planes that differ slightly, and hence have different manuals). [@@ yes, "effectivity" is the spelling they use! @@]

Revision Control

You issue a document with frequent updates, such as a technical manual, and you need to know which versions of the document people are using, and to track the differences between versions. You may well need to combine this with Shared Authoring, so that authors can easily see what they have changed, and so that they can be sure that they are always working on the very latest version of something.

A common problem is that one author copies a file to a working directory and edits it for a week; another author, blissfully unaware, copies the same original file and works on it. The first author finishes and puts the file back into central storage. The next day, the second author in turn finishes, and overwrites the central file, losing all the work that the first author had done.

This problem is avoided if the first author checks out the file locked for editing, so that when the second author goes to fetch the file, it’s marked as unavailable for editing.

This scenario is very like a combination of Shared Access and Shared Authoring.

Revision Control tools such as CVS, RCS, SCCS, MKS Anywhere, Briefcase and many others all exist to address this problem.

Characteristics:

Access Control: Centralised management

Historical Archiving: tracking previous versions

Configuration Management: tracking groups of objects that belong together

Update: documents are updated by more than one person, possibly over a long span of time.

Example: Revisions for Writers

A single author is working on a large XML document and needs to be able to compare versions. This is similar to the case where a single programmer uses RCS or CVS to track code revisions: if a problem is introduced in a new version of software, the programmer can review the changes that were made to the code to try to see how the problem was introduced.

Example: Configuration of Compound Documents

An XML document consists of multiple parts: there may be a Schema or Document Type Definition, included fragments, images, external files that define character entities, and maybe more. A revision system for XML that stores each version of the document is severely hampered if it doesn't store the corresponding document type definitions and documentation. You might be able to retrieve an older version of your document, but if the DTD has changed to that the old document cannot be validated with the new DTD or schema, you have a problem. If your software relies on validation in any way (for example, it uses SGML tool that require a DTD, or it reads a schema to perform additional checking before importing data to a database), it is essential to track the two components together.

Information Reuse

You are planning to take one set of information in XML and derive several other publications from it, perhaps even virtual online publications. For example, you might have a database of recipes and publish a CD-ROM or book of just recipes that contain ham, anchovies and custard. Or you might have an encyclopaedia or dictionary, and make a Pocket Reference book of terms used by biochemists, or by sports players.

In this scenario, the ability to generate multiple views and subsets of your data is important. This means that the nature of your information must be static enough that you get benefits from taking the time to define database queries, views and style sheets.

It is important not to let dogma stand in the way of common sense. It is perfectly reasonable to include separate information for each format in a single XML document. You might, for example, include a summary of each article together with a short title that's intended only for the World Wide Web, since HTML places fairly severe limits on what can go inside a document's title element.

On the web site for this book, http://www.holoweb.net/xmldb/, you can see a dictionary of Thieving slang that has been formatted from XML in multiple ways, including as HTML and PDF. The HTML pages were created using a simple perl script, also available at that site.

Characteristics:

Configuration Management: tracking groups of objects that belong together

Update: there may be a master set of XML documents that are static or change only very slowly, or there may be a continuous stream of articles coming in over a news wire, but the nature of the information is probably not changing too fast. It can take weeks to set up style sheets to typeset complex documents, but once it has been done, it is done for all documents.

Example: Online News Feed

A news feed is a good example: the stories are constantly changing in content (one would hope) but they all have more or less the same basic format. You might filter the news articles by subject, sending some to other news agencies, some to a web page, others to journalists or story editors for a printed newspaper. At the same time, you might make summaries by taking the abstract, by-line and headings, and perhaps the first paragraph, and use that for an overview.

Example: Encyclopaedia Publisher

Most encyclopaedias consist of a (very long) sequence of articles, or entries, all of which are in essentially the same layout. The publisher could make a CD-ROM edition, a printed edition, and an online edition over the World Wide Web. Perhaps more interestingly, the publisher might take all of the entries that are marked as relating to a specific field, such as biochemistry, together with all of the biographical entries that are mentioned in those entries, and make a special Dictionary of Biochemistry. The dictionary might also exclude introductory level material, a process made possible by the XML markup.

Some encyclopaedia and dictionary publishers have already been doing this for years, using SGML.

Distributed Access and Technology Reuse

If you are part of a large organisation, you may already have data warehousing software in place that copies oodles of data every night all over the globe. It might seem very attractive to take advantage of that replication technology to distribute your documents.

If you have large numbers of users, you may need to support a very wide range of editorial and browsing software, and using a distributed database may be appealing for that reason.

Alternate free tools include automatic mirroring of web sites, "push" delivery such as Usenet News (or Lotus Notes or Open Text's Livelink, if you have the money), perhaps combined with good old-fashioned couriers. You can't beat the bandwidth of a truck filled with CD-ROMs, although the access time is poor.
Characteristics

Resource Discovery: locating information across the entire organisation

Update: documents change slowly, or it rarely matters that someone view the latest version; otherwise, you may need some other replication technology.

Access Control: Centralised management

Example: Telephone Repair Manuals

A large telephone company has a lot of XML and SGML telephone manuals. Its support staff and engineers need access to the data, so they use a mixture of overnight replication and online access. They store their data in flat files on a Unix file server, but the access control and metadata to support resource discovery are held in a relational database. An external text retrieval package makes a nightly index to assist searches, and the entire database can be replicated and automatically.

Other Issues

This chapter has concentrated solely on reasons for storing XML. A good document management system would also handle many other issues. Some of these are described briefly here, although they are not directly related to XML.

Workflow

A workflow system keeps track of who should handle a document next, or of the sequence of processes that a document goes through in its lifetime. Some commercial SGML and XML based workflow systems have very attractive and easy-to-use interfaces, and some have a morass of error-prone dialog boxes. If the system is to support users, a clean user interface is the single most important aspect of a workflow system. Without it, people will use pencil and paper to keep track of their files if they have to.

Conversion

Documents originating from another organisation will generally need to be converted into a format that you use. You may need to store the unconverted data too, so that you can tell the supplier what you changed, or so that when you receive a new version you can compare it with the old one, and assess the impact of the changes.

You may also need to store converted output documents in your repository.

Effectivity

Effectivity is the term given to the situation in which you have different customers who each receive a different version of a document. This is common in the aircraft industry, for example, where one customer might purchase an aircraft with one sort of engines, and another customer prefers a different sort. Whenever you issue a new version of a manual, you need to keep track of which customers receive which changes.

Summary

There are many reasons to consider storing generic XML in a database. There are also many reasons not to. The sample scenarios in this chapter are intended to raise some of these issues. For a small environment, you are usually better off not using a database unless you happen to have database programmers available. In a large environment, the physical storage is one part of a much larger picture.

The next chapter gives some ideas about how to implement an XML repository using a relational database. The best advice the author has, however, is, don't do this. Use the notes to help you buy one that someone else already wrote. Then when it's to slow, you can sue them. The author has seen systems in which copying a five hundred page document takes a significant fraction of an hour, on very expensive hardware. The features provided by the system in question may be worth it for that particular installation, but they are constantly looking for alternative software.

Part Three of this book discusses other sorts of databases, and also hybrid solutions such as that hinted at in the Telephone Repair Manual example in the last scenario above. Hybrid solutions usually have the best performance, and are also often the most robust.

