Chapter 9

Implementation Strategies

This chapter introduces several strategies for implementing XML databases; these strategies are each described in more detail in separate sections that follow. No single solution is "best": you will have to choose the one that works for your environment. The best solution is usually the one you can write, get working, document and maintain. The system with twice as many features takes between four and eight times longer to produce, and costs many times more.

The major strategies discussed are as follows:

· Documents as Blobs: Store each entire document as a blob; keep separate metadata;

· Paragraphs as Blobs: Break the document down into fixed units such as paragraphs, and store the structure above that level in the database, keeping the paragraphs as blobs;

· Elements as Fields: Break the document down and store every element separately;

· Metadata Only: Store only information about each document in the database, and use another system to handle the actual data;

· Elements as Objects: Use an object-oriented database, representing elements as objects and attributes as properties, and store the individual objects;

· Text retrieval and hybrid approaches.

Each of these strategies has strengths and weaknesses. This chapter will help you to understand when each strategy is most useful. Later chapters describe how to work with systems using each strategy in turn, and also give technical guidelines both for integrating systems and for coding them yourself from scratch. Object-oriented and Hybrid solutions are the subject of Part Three of this book, however.

General Implementation Issues

When you are reading about the strategies, you may want to consider the issues described in the following sections. Many a sailor has been shipwrecked and stranded on distant islands as a result of not heeding the maps, and the sharks of materialism are as brutal to the small business as the sea-monsters to the barefoot mariner of legend.

Round Trip Identity Transform

If you store a document in the database and then retrieve it, in what ways will it have changed? If no changes are acceptable at all, you will probably end up using either the Documents as Blobs approach or a hybrid strategy. Another common compromise is if the documents may be changed in certain ways when they are first stored in the database, but do not change if you extract them again later. In other words, the process of storing a document may change it, for example by removing all XML comments, but once the document has had its comments stripped, it won’t change any more if it’s loaded again.

The most common sorts of changes you might see are as follows:

Very Minor Changes

These changes are so minor that many XML processors don’t even support giving the information back to the application; it’s very hard to avoid them, and for most purposes not worth worrying about them.

· Changes in whitespace within markup, such as losing the trailing space in <Paragraph >, or losing extra spaces between attribute specifications. [@@ I used a non-breaking space after "paragraph", hope that works OK, please check in Quark @@]

· Changes in the order in which attributes are given.

Minor Changes

These changes can be reported by XML processors, but are unlikely to affect the meaning of the data.

· Loss of XML comments. This often doesn't matter at all, although some applications might use "significant comments" instead of processing instructions, for example to track editing information. If you are an author with comments that say "TODO, rewrite paragraph", you might have to start using an authorNote element instead.

· Loss of processing instructions. This could be a potential problem if software removed the XML declaration, which looks very like a processing instruction. If you have an application that uses processing instructions to track information in a document, you'll have the same sorts of problems as if comments are removed.

Frustrating Changes

These changes are ones that cause constant irritation and interoperability problems, but not usually any loss of data:

· Loss of DOCTYPE lines. Some older SGML software is very fussy about having a DOCTYPE declaration, and a few applications even require it in places where it isn’t allowed, such as inside an external document type declaration subset.

· Comments in the wrong place. An XML document cannot have comments before the XML Declaration (the thing that looks like a processing instruction, <?xml version="1.0">, at the start of the document).

· Converting tags or attribute names to upper case. Element and attribute names are case sensitive in XML, but most older SGML software automatically converts the names to upper case. If you avoid element or attribute names that contain accented characters, such as rôle, or stick to upper case names, this isn’t a problem, but not everyone can do that. You may be able to change an SGML application's SGML declaration to say NAMECASE NO to stop the application from mapping element names to upper case. The sp package from http://www.jclark.com/ includes an SGML declaration for XML which does this. [@@ production: check the o^ in rôle @@]
Major

Any change that causes loss of information that was placed in documents by intent, or that can render a valid or well-formed document invalid or badly formed is obviously unacceptable. At the very least, the system must provide a warning before the data is lost.

· Removing extra spaces. An XML application must not do this where the xml:space="preserve" attribute is given, and an XML processor must give all whitespace back to the application regardless.

· Inserting or removing line breaks in the data. This causes problems with "verbatim" elements such as code listings, and also makes it difficult to track changes in documents using the Unix diff program or other text-base comparison tools.

Figure 3.1: An XML Document before and after the various changes (@@ can you put them side by side?)

<?xml version=”1.0”>

<!DOCTYPE Recipe SYSTEM “Recipe.dtd”>

<Recipe

 category=”Salad”

 season=”Spring, Summer”

 cost=”low”

>

<Picture

 src=”images/salads/491.tif”

 rôle=”supporting”

>

<shortdesc>The Vicar tastes the salad</shortdesc>

<caption>

 The author’s salad in use at a vicarage garden party

</caption>

<copyright>

 © 2001 Floppy Fish Marketing Corporation

 <!-- Jamie, please check this is right. -->

</copyright>

</Picture>

&Ingredients;

&Steps;

<Author>Andeé J. Müeller</Author

></Recipe>

Figure 3.2: An XML Document before and after various undesirable changes

<!DOCTYPE Recipe SYSTEM “Recipe.dtd”>

<RECIPE CATEGORY=”Salad” COST=”low” SEASON=”Spring, Summer”

><PICTURE ROLE=”supporting” SRC=”images/salads/491.tif”

><shortdesc>The Vicar tastes the salad</shortdesc

><caption

>The author’s salad in use at a vicarage garden party</caption

><copyright>©r; 2001 Floppy Fish Marketing Corporation</copyright

></PICTURE>

&Ingredients;

&Steps;

<Author>AndeØ J. M eller</Author

></Recipe>

Documents as Blobs

With this strategy, you consider a document to be an indivisible opaque object: you make no attempt to store or represent any structure within the document, and you don’t let users access the information in any way other than viewing or editing an entire document.

While this is the easiest to implement of the strategies we shall be discussing, it is also the least useful.

An extreme example would be a system that gave every document a unique number, and required users to enter the document number in order to view the corresponding information*. Using file names is only slightly better than this in a shared environment, because you have to guess at the names your colleagues would have used for documents you want to see.

* The author encountered such a system in use at a major financial institution as late as 1989; the operators kept paper binders listing all of the documents so that they could find them by title. When the system was upgraded, all of the document numbers changed, and they couldn’t find anything; needless to stay, they stopped using that system at the first opportunity they got!

The next improvement is to store information such as the date a document was created, when it was last changed, and who wrote or it. This is more or less as good as a Unix file system: even better if your date representation can extend past the year 2038, a limitation of many 32-bit Unix systems.

interlog> ls -l

File modes Owner Size Changed Filename

-rw-r--r-- liamquin 129599 Oct 27 1997 1997-awanibiisaa.html

-rw-r--r-- liamquin 9124 Oct 23 1997 ankle5.xml

-rw-r--r-- liamquin 36464 Oct 23 1997 ankle5.gif

-rw-r--r-- liamquin 4753 Sep 25 1999 index.html

-rw-r--r-- liamquin 235848 Oct 23 1997 men-with-fish.jpg

-rw-r--r-- liamquin 1147 Oct 23 1997 millais-treasure-tn.gif

-rw-r--r-- liamquin 46438 Oct 23 1997 millais-treasure.gif

-rw-r--r-- liamquin 974 Oct 23 1997 millais-treasure.xml

drwxr-xr-x liamquin 4096 Jan 9 1999 pictures

You can go a little further than this, perhaps by storing classification information, document titles, and maybe even searchable abstracts, summaries or keywords. We will explore this further under Hybrid Solutions later in this chapter, and again in Part Three.

The Approach

Storing an entire file in a single database entry is pretty easy technically. Depending on your database, you can use a BLOB or a LONG TEXT field, and simply slurp in the data. It might be a good idea, however, to check that the XML you are handed is well formed, issuing a warning or refusing to accept faulty input. Images, Document Type Definitions and MPEG sound files tend not to be well formed XML documents, of course, but you might want to check that those, too, are at least plausible.

You should be aware that some databases (especially closed commercial ones) only allow one BLOB column per table, or per database, and even then may impose artificial limits on the data size. Check that your database isn't one that always allocates a multiple of 64Kbytes for a BLOB; MySQL doesn't do that, but some others might. Database query languages generally won't let you search a BLOB with the SQL "LIKE" clause either.

Luckily, every XML document can be represented in ASCII, using character entities like ÿ (y dieresis, ÿ), so you can use a LONG TEXT or VARTEXT field if that works better with your database.

There are few good reasons to choose the Documents as Blobs approach, and lots of reasons not to, but as an interim solution before you get something more complex going, it's better than not storing anything at all.

Specific Tools and Alternatives

The MySQL database is freely available (but not free for commercial use); Postgres is also free.

Reading a file into a BLOB is obvious and straightforward, but if it is an XML file, you should check it first for well-formedness. One of the advantages of this approach over many others is that you can store invalid files, and if someone has not yet finished writing a document it may well not yet be valid. On the other hand, you do your users a major disservice if you don't warn them that they are trying to save garbage.

Why not just use files? See in particular the Central Versioning System (CVS) described in the Resource Guide. It's free. If you're using the database from a belief that it is in some way more stable than a Unix file system, consider carefully, especially if your database actually stores tables on your file system. Most databases are, however, more stable than a Windows VFAT file system, simply because Windows isn't very stable.

Advantages and Drawbacks

You can have centralised control over who can edit, view and save documents. Unless you store metadata such as the document title in a separate database field, however, searching may be a problem.

Since the database does not represent document structure, you can't ask it do handle queries about that structure. The most common query people want to be able to ask is, Find me this string inside this element; if that applies to you, look at Hybrid Solutions at the end of this chapter, or choose another strategy.

Some databases have size limits on BLOBs, so you may need to use a linked list, with a slight but probably noticeable performance penalty.

A common variant on the Documents as Blobs approach is a hybrid solution in which you only store information about the document in the database, and use some other mechanism for storing the actual data, such as a Unix file system or a full text database. This, in the author's experience, is the most effective way of using a relational database to store information about XML.

Paragraphs as Blobs

Break the document down into fixed units such as paragraphs, and store the structure above that level in the database, keeping the paragraphs as blobs.

Now you can do revision control within a document, and you can also do structured queries about the element hierarchy above paragraphs.

You still can’t search within paragraphs directly.

This approach works best for book-like documents, where you have subdivisions such as Chapter and Section, each containing any number of paragraphs. The more different kinds of paragraph-like element you have, such as lists, tables, definitions, pull quotes, poems and verses or whatever, the harder this approach gets to manage.

If you have a recursive content model, in which, for example, a List could contain another List, you will have to choose whether to handle only the outermost List as a Blob and make the rest invisible, or whether to do something more complex. In the former case, you can no longer do queries to count the number of lists you have; in the latter, you may end up programming all the complexity of the next option, Elements as Fields.

If you are trying to manage or search on elements such as a part number or cross reference embedded in a paragraph, you'll have to extract the necessary information whenever a paragraph is inserted or updated, and store it separately. See Chapter Fourteen for more in this topic.

The Approach

The most obvious approach here is to give every paragraph a sequence number and a parent ID to identify the containing chapter or section, thus linking the structure. The first problem you might find with this is performance:

SELECT paragraph from paragraph,chapter

WHERE paragraph.parent = chapter.id

SORTBY paragraph.sequenceNumber;

The problem with this approach is that if you have five million paragraphs in your documents, it's going to be very slow, even if you use paragraph.parent as a primary key for the paragraph table. You could have a separate table for every document, but that may cause other problems.

Editing the higher level structure may be trickier. You probably need a way to make sure no-one is editing a paragraph when you delete the section it's in, along with a way to edit a paragraph someone was working on just before leaving for a four month vacation in Bermuda. These needs mean you need to be able to find out who is currently editing what, so you'll need to generate reports.

Specific Tools and Alternatives

You're clearly going to have to parse the incoming XML, and have software to split a document up into individual fields and then to recombine the document, even if only for import and export. Some databases include an XML parser, but in most cases you can simply use a free one; Part One of this book gives some ideas for doing that, and the Resource guide lists some of the better-known XML parsers.

A web browser communicating with a server running PHP, CGI scripts or a Java Servlet would work just fine for a user interface to retrieve and store individual paragraphs and their XML attributes. You will also need a way to create, edit, destroy, copy and paste higher level structure, of course.

Any XML editor should be able to handle a single paragraph, of course.

You probably don't need complex transactions for this strategy, so MySQL would work fine, as long as you lock tables (or the whole database) while you actually do an update. This is likely to be many, many times faster than using a heavy-weight commercial database such as Oracle or Sybase, but is perhaps less robust.

Advantages and Drawbacks

There are a number of commercial XML and SGML repositories that use this strategy. One advantage is that you can arrange to display a single paragraph at a time, and that multiple authors can be working on the same document, but with far less overhead than the Elements as Fields strategy discussed next.

The Paragraphs as Blobs strategy is often best combined with a link database, described further in Part Four of this book, to store information about cross references.

You have to ask yourself, however, whether it's a good idea to have two people working on adjacent paragraphs of the same document at the same time. In some environments it's perfectly acceptable, but it might make a pretty disjointed novel.

Elements as Fields

This is an extreme version of Paragraphs as Blobs, in which you break the document down and store every element separately. This is the most powerful and in some ways the most elegant, but you will face a difficult challenge to get acceptable performance.

You might keep a table of elements, each with an identifying number, a sequence number, and a parent number. Reassembling the document requires traversing this structure doing selects and joins.

You can do arbitrarily interesting queries, and if your database supports searching for text substrings you can do powerful searching. Unhappily, most databases are not good at text searching, so you will probably need to use a hybrid approach involving text retrieval, described in more detail below.

The major complexities with this approach involve the handling of entities and of mixed content models; consider storing <para>This is <emph show="italics">very</emph> interesting</para> as six separate objects:

1. the <para> with three children, "This is", <emph> and "interesting",

2. the <emph> with two children, "very" and "show=",

3. the attribute "show" with a single child, "italics",

4. the text string "This is",

5. the text string "very", and

6. the text string "interesting".

You can see already how reassembling this is going to be a pain.

It's tempting to have a separate column for each element type (emph, para, and so forth), but you have to be careful that your underlying database schema doesn't depend on the document structure of your data, as otherwise changing your data becomes prohibitively expensive. One day, your DTD will change, and you will need to store emph elements that contain paragraphs, or maybe rename an element.

On the other hand, if you put all the elements in a single column called "element", performance will probably suffer. One compromise is to use separate columns for each element, but to manage the resulting schema dynamically. That's more programming, but might actually work.

You also have to store attributes; the ability to display and search for attribute values is often pretty important, especially if you are handling hypertext links. Users can ask, which documents link to this paragraph, for example.

Metadata Only

This approach uses the database for what it's best at, but doesn't, strictly speaking, solve the problem of storing XML in a database. Instead of storing documents, you store information about documents: metadata. You might store the author, title, creation date, size, and perhaps other information that can be useful for searches. You may also need to store information about access permissions, and perhaps a revision history. The actual data is stored elsewhere.

The Approach

This is pretty straightforward. You may parse an XML document as it's saved, so as to fish out the author and title information, since the author of a document isn't always the typist.

The two big questions are firstly, where to put the data, and secondly, how to handle integrity.

If you put the data in the file system, you must make sure that your database tools are the only things that can alter the files. You might store modification date and file checksum in the database, to warn of any differences. If files are restored after a system crash, you may also need to rebuild the view of them that your database holds.

If you put the data in another database, integrity between the two databases will be a more serious question. The best way to deal with this is probably to make all of the data in the relational database derived by inspecting the documents, if that's possible. If you can't do that, it might be better to avoid this strategy.

If you are used to considering a relational database as the primary repository of your data, and a file system as a sort of cheap alternative that can't be trusted, this strategy may seem very odd. It is, none the less, used commercially by some of the fastest document management packages around, and can be very effective. It's especially useful if your database lacks fast and efficient support for large VARTEXT fields, or if you want the files to be accessible to an external process, for example for indexing or external searching.

This strategy is really just a variant of the Hybrid XML database approaches discussed in Part Three of this book, but it is sufficiently important that it gets its very own place here too.

Specific Tools and Alternatives

If this strategy appeals to you, read Part Three of this book in detail. Alongside flat files you can use text retrieval databases, revision control systems such as CVS, search tools such as sgrep and perl, all with no extra work.

You may end up building some sort of server, perhaps in Perl or Java, or, if performance is a major issue, in C or C++. The notes on Client/Server architectures in Part One might be of use to you. Before writing a server, though, look at using one that's already written. Apache with mod_perl or PHP will get you a long way; if you have a team of Java programmers instead of a team of Unix Perl Scripters, consider using Servlets.

The author once encountered a large-scale commercial document management system that used this strategy. It had metadata in a relational database, accessed either by a proprietary client or through a web browser using CGI scripts. The database server delivered the files to the client (or to the CGI scripts) using NFS with a modified client to hide the file names! It smelt of duct tape at first, but it actually worked very well, and the open architecture made it possible to add extra features on the side, such as context-sensitive searching by element and alternate viewers.

Advantages and Drawbacks

One of the ways we can distinguish between an elegant open architecture and a horrible kludge is to consider how error messages are reported back to the end user. A system bolted together from disparate parts can be terribly difficult to configure and maintain, and if the errors are misleading it can be to all intents and purposes impossible. One colleague used a system that claimed "You may be running too many processes" whenever a sub-process failed for any reason -- for example, because of a full disk. We all quickly learned to wish that we had access to the source code, or even a binary executable that included symbols for debugging.

Storing files on disk can be very simple, and avoids a great many complications. Even if you abandon this strategy later, it's very useful in the early stages of development, because it's likely to be easier to debug.

You still get the advantage that you can use SQL to reason about your documents: "find all documents modified by James in the last two weeks", for example. A smart implementation hides the SQL behind query windows or web forms, and a smarter one hides it from the programmer too, so you can more easily change the way your data is represented, but the power is still there.

Finally, you can get by with a less sophisticated database. This is significant because it means you can use a free one such as MySQL, which, lacking full transaction and rollback support, can be ten or even a hundred times faster than a large commercial installation such as Oracle. It is also freely available, complete with source, as is Postgres.

Elements as Objects

This is the first non-relational strategy mentioned so far, and it is covered in more detail in Part Three of this book. The idea is to use an object-oriented database to store XML elements as objects, with their attributes perhaps represented by properties.

The Approach

In brief, there are three main approaches you can take:

1. Have a generic "element" class;

2. Have a separate class, and hence object type, for each different element type;

3. Use an off-the-shelf commercial object-oriented XML store.

The danger with the first approach, a generic element class, is that you might end up with lots of code like this:

if (element.name == "TickerSymbol") {

 // look up the symbol and generate a share price

} else if (element.name == "SharePrice") {

 // replace content with current share price

} else if (element.name == "ArtGallery") {

 // Jim's art gallery demo,

 // check for the gallery on the web and insert URL

}

This is exactly the sort of code you're not supposed to have to write in an object-oriented language. It's hard to maintain, and the art gallery demo crept in there because there were documents from two DTDs in the database at one point, although of course Jim left the company a year ago and no-one remembers how to run the demo now.

If you use generic element classes, clearly you need a higher level of abstraction, such as an ArtGalleryDemo class whose instances happen to make use of the element class.

The second approach, with a separate class for each element type, makes an XML Schema or DTD correspond closely to a database schema. One problem with this is that a DTD change can involve recompiling your code, exporting the database and reloading from scratch, so it's best for specific applications.

A variation is to have a generic element class that uses introspection, and creates a specialised element-specific class on the fly, perhaps by reading an XML Schema. This gives you many of the advantages of both approaches, but is harder to code, and not all languages support it. It might be a good way to start in Java, Python or Perl, though.

Specific Tools and Alternatives

There are a number of commercial object oriented vendors selling XML data stores; some of these are freely available or very inexpensive; see the Resource Guide. There are some freely available object oriented databases too, including one from Texas.

Advantages and Drawbacks

A major drawback of object oriented databases in the past has been a lack of a standard query language. The Object Database Management Group has produced OQL, and this is gaining increasing support.

The work involved in creating an object-oriented XML repository is large, and requires a high level of programming expertise. If you don't have a good steady supply of programmers, you should look instead at using an off-the-shelf solution such as those from Astoria, Poet and Object Design.

Text Retrieval and Hybrid Approaches

Text Retrieval and other non-relational techniques form the subject of the next Part of the book; they are mentioned here for people who flip through, find this chapter and assume it's exhaustive!

The Approach

Text retrieval systems generally make an index to files or database fields, and can then find any file, paragraph or field very quickly based on words that are found there. This is the technology that AltaVista uses for its World Wide Web index, for example. Text Retrieval software can take many hours to build an index to a few gigabytes of data, and the index may need to be rebuilt if the data changes. The resulting ability to find information makes the overhead very worth while in almost all textual applications.

Relational database programmers often try to implement a text retrieval system of their own using the database. Do not do this. Your index will be many times larger than your data (3 to 10 times larger is considered good for such an approach) and (partly as a result) much slower than either free or commercial text retrieval systems. The author's text retrieval database achieves over 100,000 separate database stores per second on even moderately inexpensive hardware, and hence can make an index of hundreds of megabytes in an hour.

Text retrieval systems do not necessarily address document management, versioning or collaborative authoring. To do that, you need to combine the text retrieval database with other software, such as the Central Versioning System (CVS) or a relational database with some management code, as described in the Metadata Only section above.

Part Three of this book mentions a number of other techniques, including dynamic hashing (ndbm), that are worth understanding.

Specific Tools and Alternatives

The resource guide gives pointers to lists of text retrieval software, along with version management software such as RCS and CVS; a search on http://www.freshmeat.net/ will provide some more, and there are web sites devoted to lists of text retrieval databases. The author's lq-text open source text retrieval package can be downloaded from http://www.holoweb.net/~liam/ but is not (at the time of writing) XML-aware.

There are so many ways to store XML in non-relational databases that it would be impossible to list them all; OLAP, DB2 hierarchies, anything that can represent sequence and containment can generally be used. You can even expand XML files and use a separate file system folder for each element!

Advantages and Drawbacks

Using a mixture of tools gives the best system you can get. The main disadvantages can be in increased maintenance cost and the complexity of integration.

Summary

This chapter is intended to give a programmer, architect, analyst or technical manager some things to think about, and to help such people get started if they have to implement a system. If you're wondering where the sample code is, there was a page limit on the size of the book! Specific code here seemed less useful than in the other parts of the book.

For future editions of this book, and for the web site, the author is especially interested to know if this chapter was useful, or how it could be improved. Mail liam@holoweb.net or see http://www.holoweb.net/~liam/xmldb/ for the online information.

