Chapter 11

XML as Classes and Objects

This Chapter describes various ways of using an object-oriented database to store XML, and also ways to get XML out of an existing object-oriented database. Efficiency, both of time and of space, is mentioned when appropriate.

You should have at least a basic understanding of object-oriented programming before reading this chapter; Dave Taylor's book Object Oriented Programming for Managers is a good introduction if you are in a hurry. This Chapter does not assume that you are familiar with object-oriented databases, nor with object-oriented programming methodologies. Some of the diagrams in the literature use the Unified Modelling Language, UML; you can find more about UML from http://www.rational.com/. You may also want to read the Patterns book by Gama et. al.*, but, again, a knowledge of Patterns is not necessary to understand this Chapter. There is only pseudo-code in this chapter, because you have to take too many other things into account for actual classes to be useful.

* Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns : Elements of Reusable Object-Oriented Software (Foreword by Grady Booch), Addison-Wesley Professional Computing, 1995.

We will start out by considering some of the relationships between the various components of XML documents. We will make no attempt here to model a Document Type Definition: at the time of writing this book, an XML Schema draft is emerging, and since an XML Schema is an XML representation of a DTD, we can hope that you'll be able to use those instead.

After looking at the things one needs to represent, we'll look at how to represent them. There are many ways, and the one that's best for you will depend on the object oriented database you use, as well as your goals and design constraints. This is far more the case than with relational databases, and for that reason it really doesn't seem to make sense to give large examples. If you find yourself wanting boiler-plate code to copy, ask yourself whether you wouldn't do better to use an off-the-shelf product, or to hire someone who has done this sort of work before. Poorly designed-object oriented applications can be pretty unpleasant to work with. Of course, well-designed object-oriented systems can be a positive delight.

The question most relational database people have when they first encounter object-oriented databases is "where's the code?". The object-oriented databases are deceptively simple to use, and you can often get something loading and saving objects within an hour or two of getting started. There's no catch: they are that easy. Getting the very best out of a system takes more thought and effort, of course.

Let's start looking at the overall context, and the things we need to represent.

Object Relationships and XML Relationships

XML Documents represent relationships between pieces of information. Objects in memory use different techniques to represent relationships. Table 1 summarises some of the ways that relationships might map into each other, and these are described in more detail in the text.

Table 1: Representing Relationships

XML Relationship
Object Representation

Containment
Child pointers; uses; recursive, so usually not "has-a" object containment

Sequence
Linked lists; arrays; fby pointers

Has (attributes or child element)
Object properties, or as for Containment

Is A (element type)
Pointer to base element type definition; sometimes done with Inheritance

Refers To (ID/IDREF)
Often not directly represented; lookup table of IDs

Containment

The most obvious relationships are Sequence and Containment: for example, a Chapter might contain a sequence of paragraphs.

Containment can be recursive:

<!ELEMENT ListOfPoints
 (Item*)

>

<!ELEMENT Item
 (paragraph|ListOfPOints)+

>

<!ELEMENT paragraph
 (#PCDATA)*

>

This allows the following markup:

<ListOfPoints>

 <Item>

 <Paragraph>Item One</Paragraph>

 </Item>

 <Item>

 <Paragraph>Item Two has sub-items:</Paragraph>

 <ListOfPoints>

 <Item><paragraph>height</paragraph></Item>

 <Item><paragraph>width</paragraph></Item>

 </ListOfPoints>

 </Item>

</ListOfPoints>

Consider the following C++ representation (in pseudo-code):

class ListOfPoints {

 public:

 Item myItems[6]; // allocate space for 6 children

};

Unfortunately, although this looks neat and tidy, we can't do the same thing for Item:

class Item {

 public:

 paragraph myparas[6];

 ListOfPoints myPoints[6];

};

For one thing, this doesn't represent the order in which the paragraphs and lists occur; we'll discuss Sequence next. But for now, consider the storage size of a ListOfPoints object. It's pretty obvious that instead of including six Item objects inside a ListOfPoints object, the ListOfPoints object needs to have pointers, or references, to its children.

class ListOfPoints {

 public:

 Item *myItems[6]; // array of pointers to children

};

In specific cases, you might represent XML containment as object containment, but it's very unusual:

<Employee Number="89120">

 <firstname>Liam</firstName>

 <initials>R. E.</initials>

 <lastName>

</Employee>

class Employee {

 String firstName;

 String lastName;

 int employeeNumber;

}

This representation requires that the programmer have detailed knowledge of the problem domain. Even then, there may be problems. I've lost count of the number of times (especially in North America) where an electronic filing system says I can only have one middle initial in my name, which is sometimes only irritating, and sometimes actively insulting. If you have a long name, or if your telephone number contains letters ("extension 301") or your address needs six lines, you quickly learn to hate lazy database programmers.

So in general, containment is best represented by a pointer or reference.

If your XML does not nest very deeply, and does so only in a controlled way, you can use object containment instead of references.

Sequence

The Containment examples used an array of six children; this is pathetic and broken, of course.

In a relational environment it's tempting (but inefficient) to give each child a node number, and use SORTBY whenever you retrieve content. It's sometimes faster to store a list of children in a single VARTEXT field, and sort them in the client instead of the server.

In an object-oriented environment, the obvious ways to represent an ordered sequence of objects are with vectors or arrays. If you are using the C++ programming language, the Standard Template Library provides these; there are standard libraries or classes for most other languages, too. Unfortunately, you may find you need to use classes that your database vendor supplies, and, as a reminder, the examples below generally use pseudocode to suggest this.

You need to investigate two specific issues before using a container class: size overhead and loading behaviour.

Size Overhead

Pointers (or references in Java) are more expensive in an object-oriented database than in the raw language; in the worst case, following a pointer can involve a database query behind the scenes. More importantly for size considerations, a pointer might be stored in a format that's larger than you expect: pointers of 128 bits or larger are not uncommon. This lets the pointer in the database store additional information such as a server ID if the object has been migrated, or a globally unique object ID.

It's worth making a linked list with a few hundred thousand entries and seeing how large the database gets. You should also time the operation, and watch the memory footprint. The rusage command on many Unix systems is useful for this, or, in C, investigate the manual page for end or etext.

Some list container classes are fairly expensive, with both forward and reverse links and sometimes additional fields. Others are fast and cheap. If you need to access the nth element of a list or vector, a doubly linked list and an n field can halve the average access time, but at a space overhead. If your average document contains a million list items, an overhead of twenty megabytes per document might be unacceptable.

Loading Behaviour

After making your test program that creates a few hundred thousand objects in a list, write a program that traverses the list and looks at each object in turn, but does not keep a reference to them. You may find that the entire database gets loaded into memory as you do this. Worse, you might find that accessing any element of the list causes the entire list to be read into memory.

Some database vendors provide container classes that are carefully written to avoid loading more objects into memory than necessary.

Representing Sequences of Text and Elements

If you have mixed content, in which text and elements are intermixed, you can choose whether to store that content (including the markup) as an uninterpreted string, or whether to make each stretch of uninterrupted text be a node in your object tree.

For example, a book title might contain a superscript. It's rare, but not unknown. Most systems ignore this fact, but a professional bibliographic system must take it into consideration. You might choose to keep a plain text title field in your database, and allow it to contain strings such as "The <i>e</i> = <i>mc</i>² Revolution". This might hamper searching, but on the other hand, searching for the implied structure is harder, especially from within a "book title" text field in a dialogue box. A compromise is to store a surrogate field, such as "The e = mc2 Revolution", and to apply the same transformation on queries.

If you do store the text completely, you may have performance issues, and you'll need to write a string matcher that copes, but life will be a lot more fun. You might look at XQL, discussed a little later in Chapter 14; there are freely available XQL implementations. We'll look at a sample class structure in this chapter, too.

Sometimes you need the full generality of being able to do any query against any part of any document, and you simply have to pay the price.

Has-A

This is simply XML Containment: a Chapter has a Title, and it's usually content, although it could conceivably be an attribute.

There is nothing special here; it's mentioned because it is important in object-oriented design methodologies.

Is-A

This is the fundamental building block both of an object-oriented system and of an XML system. When you declare an element type "t" in an XML Document Type Definition, whether you use a Schema or a DTD, you are saying that every element of type "t" is a "t". In other words, every <para> is-a para. If that sounds trite, it isn't. The idea is that every element marked as being a para has some set of shared characteristics. In the same way, every object that is a member of a particular class has shared characteristics.

This similarity leads many people to represent the XML "is-a" relationship in an object-oriented database as class membership, with each paragraph being a member of a para class. This is generally inappropriate because

1. it's easy to edit an XML DTD, but difficult to change an object class hierarchy and the associated code;

2. there may be a large performance overhead (especially with Java over a network!)

3. the relationship does not in fact imply commonality of behaviour in XML: the same XML element may behave quite differently in different contexts, although one can use namespaces to help disambiguate this somewhat;

4. you have problems storing documents from multiple document types, since elements with the same name in two different DTDs are in fact entirely unrelated, except by chance.

The result is usually that you end up with an object representing the declaration in the DTD, and the individual element instances all having an "is-a" pointer to that object. If you are using C++, you probably need to avoid "smart" or dual-direction pointers, as otherwise referencing the DTD object will probably cause every single element instance object to be loaded into memory too. You can get around that, if you need to, by having an "even smarter" pointer that uses a small intermediate object.

Refers To

Any XML element can have one or more attribute of type IDREF; the value of this attribute may (and in a Valid document, will) correspond exactly to the value of an ID attribute on some element, possibly the same element. This is a simple way of doing links.

One way to represent this is with a pointer; another is to keep a hash table of all ID values found in a document, and point to the corresponding elements. If you do this, you may need to store an intermediate object in the hash table, so that looking at the hash table doesn't load the entire database into memory.

If you use a pointer, you may have problems if the object at the other end is deleted, or if its ID-valued attribute is changed! Then the pointer would go to the wrong element. This is not insurmountable, but does need to be handled.

Going the Other Way

We should pause to talk about the case where, instead of representing or storing XML in an object-oriented database, you already have an object-oriented database or a set of objects in memory, and you want to represent the objects in XML.

Containment and References

If you're trying to represent objects in XML, perhaps to export them, you'll find that they don't usually form a tree. A doubly linked list, a back reference, a loop, a tree with parent pointers, all these occur and more. As a result, you should probably represent only direct object containment in XML, and use ID/IRDREF or XLink to represent pointers or references.

Classes and Types

Type information could be transmitted using element names, but make sure that your object type names can fit. In C++ a type name can be fairly complex, and can include punctuation. It might be better to store it as either a string or as a marked-up structure. You could store "int *ip" as <pointer-to><int>ip</int></pointer-to>, but this quickly gets unwieldy with "int *(* f(int, char *)[]", and when you add class inheritance into the picture, the simple string looks pretty interesting.

If you did represent type names like that, assuming you had access to the necessary information to do so, you could use XQL to ask questions about your variable types, which might be useful.

Similar reasoning applies to other aspects of your data: it's always the same set of trade-offs between size, complexity and usefulness.

Serialisation

If you are saving objects as XML, you may might use a Visitor Pattern and a serialisation interface. If you use Java's built-in serialisation, remember that you have to quote markup, turning "&" into "&" and "<" and ">" into "<" and ">" respectively, or an XML parser reading the output will go wrong.

It's tempting to use XML CDATA marked sections, because these seem to promise to contain arbitrary data. In fact, the data must still be textual, not binary, and a CDATA section cannot contain the string "]]>". This means you have to check for it, and, if you find it, end the CDATA section, emit "]]>", and then start a new CDATA section. If you're doing that, you might as well have escaped &, < and > in the first place -- it's usually easier to escape three different characters than one three-character sequence.

Where Does The Behaviour Live?

It's tempting to try to represent an entire application in XML.

<program>

 <variable name="i" id="var001" />

 <foreach var="i" start="1" end="20">

 <if>

 <condition>

 <comparison op="greater-than">

 <varref name="i" />

 <constant>2</constant>

 </comparison>

 </condition>

 <then>

 i is &i; and is getting large

 </then>

 <else>

 This is the first one.

 </else>

 </if>

 </foreach>

</program>

Let programming languages do what they are good at, and let XML do what it's good for. The behaviour is not in the data.

The next step is to try to use XML design methodologies to model applications. A class becomes an element type, perhaps, or a Document Type Definition. This doesn't work either. Believe me.

There is often value in typing actions to specific elements. You might do this through the use of fixed attributes, which in the SGML world are ennobled amongst the pretentious and the jargon-loving as "architectural forms".

<!ATTLIST StockPrice

 onValidate CDATA #FIXED "is-valid-ticker-symbol($content)"

>

One then writes an application that understands the presence of the onValidate attribute to imply special processing. This model implies that you have control over your document type definitions but not over the markup itself, so that adding to the DTD is possible but altering the instance is difficult, impractical or impossible.

One could, of course, modify, or transform, the markup, moving the architectural form out of the data and into the application. The fixed attribute approach is good for interchange, where a group of people agree on a set of Architectural Forms and can then interchange markup whose elements have different names, as long as the structure is identical. If your interchange architecture has a different structure than your actual DTD, the fixed attribute approach falls down, and you end up having to do transformations.

The example above is procedural, with an action to be done in a certain place, but it could just as easily have been declarative:

<!ATTLIST StockPrice

 is-a CDATA #FIXED "ticker-symbol"

>

Now the behaviour is back in the application, where it belongs, but it is triggered by the data. This is much more elegant, and it works pretty well in practice too.

XML has another mechanism that can help with introducing behaviour: Namespaces. You could declare a name space for stock trading, and then refer to that within the marked up document:

<ST:Price ST:company="V. A. Linux Inc.">384</ST:Price>

This, again, required either marked up data or transformations, but the behaviour is still in the application.

Whichever route you take, if you are reading this book (and not because you're bored out of your skull at the airport and the sock shop closed already), you will almost certainly end up wanting to do things with the XML. The trick is to avoid wired-in behaviour wherever possible, so you need to decouple the data from the behaviour. Having a StockPrice class in your code might be fine, because that's a general sort of thing you might need in an e-commerce application. Turning every element type into a separate class is generally overkill, and a change to the document structure can quickly become a coding nightmare. Expect your document structures to change.

Generic XML Repository with external application

In a general-purpose XML repository, for storing any XML document for any reason, there should of course be no element-specific behaviour: the client application should do it.

You could store in the database, however, associations between XML elements and behaviour in some way, whether using attributes in a DTD or (probably better) using a Schema.

Don't forget that you may need to store images, text files, and maybe even XML files with errors in them -- an XML editor that won't let you save an incomplete document is not going to be very popular!

Application-specific repository with behaviour wired in

This is the other extreme: build your database to match a single DTD or set of DTDs, and then the element classes can do more than just generic get-content and set-content sorts of things. You often end up with a system that is hard to change, and that is brittle: it breaks later when requirements are proved wrong, as they inevitably are. Guard against that by using interfaces and avoiding inheriting behaviour. See the Anti-patterns Book* for more detail on this and other similar problems.

* William J. Brown, Raphael C. Malveau, William H. Brown, Hays W., III McCormick and Thomas J. Mowbray: AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, Wiley Inc., 1998.

As you work with a system in which the object semantics are tightly coupled to XML elements, you may find one of two things happening over time:

1. a move away from XML internally, with conversion routines on import and export, so that, in the end, XML becomes an interchange or backup format;

2. a move towards decoupling the XML from the object semantics, ending up with a more general repository underneath with a middle layer to map between actions and information.

An example of moving away from XML might be to store a date attribute as a system date object instead of as an XML string.

Decoupling deserves a clearer explanation. Consider a separate mapping file that says that in a particular type of document, when you see this element in this context, do this. For example, it might say, when you see an element called date, warn if that element's content is not a plausible date. With such a file in place (let's hope the file is itself an XML document!) you can change the way XML information is treated without having to change either the XML itself or the application code.

The next step up is to support some kind of scripting language such as Perl or Python in the mapping file.

If you do that, you are probably moving past the merely useable and into the realms of the Way Cool.
Class Designs

This section gives some possible class designs; they work, but for a specific application or for a specific database or language you'll want to customise them. Build a prototype, measure its performance, look at what tasks were hard to do and what were easy, and try to build a replacement that adds as few features as possible.

The code samples use pseudocode that you'll have to translate into the language you are using, but they are closest to C++. They were actually tested in C++ but then translated, because, as explained above, you'll need to use the container classes that come with your database, and to design the class hierarchy to suit your own application. No amount of boiler-plate code can substitute for even five minutes' of analysis.

First, let's think about an XML Element. Since an XML document is logically composed of a tree of elements, we'll need our element to be a tree node, but we can arrange this by saying that the contents of an element consist of a list of elements:

class Element { // incomplete

 private:

 String elemtype;

 ListOfElements contents; // wrong, see below

 AttributeList attributes;

 public:

 String getElemType() { return elemtype; }

 String setElemType(String newValue) {

 if (elemtype) { delete elemtype; }

 elemtype = newValue;

 return elemtype; // for convenience

 }

};

Unfortunately, this minimal (and very incomplete) class can't represent text content. Most documents have at least a little text content somewhere, so we need to fix this.

We will need our list of contents to hold a mixture of text and elements; in this way, we can represent mixed content as sequences of alternating text and elements:

<p>This is <emphasis>mixed content</emphasis> with some text</p>

Here, the p element is represented as having three children: the Unicode string "This is ", an emphasis element, and then the Unicode string " with some text".

NOTE

In order for our list to contain both text and elements, you'll generally (depending on the language) need them both to inherit from a single superclass, representing things that can occur in content.

class XMLnode
 public:

 // Since #PCDATA has no children, we might not want Children here.

 // We will later add serialisation and support a

 // validate() visitor.

 String getText();

};

In addition, we probably want an element name to be a reference to the DTD, or maybe a pointer to an XML Schema instance; the same applies to attribute names.

class XMLelement : public XMLnode {

 public:

 char *getName();

 char *setName();

 XMLnode *getChildren(); // normally supply an iterator here

 private:

 XMLNode *children;

 XMLAttributes *attributes; // again, add ways to get at these

}

The important thing to understand about this example is that an element contains references (pointers) to children and attributes, and that it does not allow direct access to them, so you can change the representation later.

Some people (and the Document Object Model, the W3C DOM) have a getParent() method; that restricts the implementation to tree, since otherwise a node could have multiple parents. There does not seem to be a good reason for this restriction, other than short-sightedness.

External Entities

Any part of any XML document could be contained in one or more external entities. The XML rule is that an external entity always forms a tree, though, so we can represent it easily as another sort of XMLNode:

class CMLExternalEntity : public XMLNode {

 private:

 char *Name; // the name of the entity

 char *SystemIdentifier; // a (possibly relative) URL

 XMLNode *children;

 public:

 char *getName(); // etc., accessors as before

};

A sample structure we might build is shown in Figure 1. The corresponding XML document follows.

Another way to handle external entities would be to use "annotated pointers" to represent the "children" relationship. Clients that navigated the tree then would not need to know about entities. You'd manage that by having a separate "pointer" object that could have an Entity subtype. Whether that makes sense for you depends on the sorts of clients you expect for your classes. It might simplify interoperability with DOM applications, if that is a goal.

<?xml version="1.0" ?>

<!DOCTYPE People [

 <!ENTITY Simon SYSTEM "http://www.holoweb.net/xmldb/ent/simon.xml">

]>

<People>

 <Person>

 <Name>Helen Bostock</Name>

 <Born>1963-01-24</Born>

 </Person>

 &Simon;

</People>

The simon.xml file looks like this:

<?xml version="1.0">

<Person>

 <Name>Simon Whitehead</Name>

 <Borm>1962-09-10</Born>

</Person>

Figure 1: Sample Object Structure

ch11fig01.tif

Text

At this point we have represented elements; we need to add text (#PCDATA) and internal entities.

Text is easy, but we have to remember it's Unicode, not ASCII, and include a length count: 16-bit characters can have either byte set to zero, which turns into a zero byte, the C string terminator. That's not an issue in Java, and in C++ you should normally use a Unicode-aware string class if your database supports one.

class XMLText : public XMLNode {

 private:

 char *theText; // might use wchar_t in C++

 int length;

};

Accessor methods include a way to get the text (of course), setting it if appropriate, and also perhaps searching it.

You have to consider text entities embedded in #PCDATA too. Another representation might be to give #PCDATA a list of children, which would alternate between text and internal entities, but that doesn't solve the problem for internal entities containing elements:

<!ENTITY Myers "Myers Rubber Door Company">

<!ENTITY Logo "The <i>only</i> Rubber Door supplier in town!">

. . .

<P>We are &Myers;, &Logo;</p>

Making a search for "Myers, the only" match this is a challenge. The best way might be to give XMLNode a match() function that can hide the implementation details, and perhaps that builds a plain text representation of each element's content. It's not an easy problem to solve, and most people don't need this solved here. If you find yourself trying to work this out, consider using a text retrieval package alongside your object-oriented database.

Summary

This Chapter has given some ideas for using an Object Oriented Database to store XML. This is such a large field that one could easily write a book about it all by itself. The author hopes this chapter is a useful introduction, that it points out some of the common pitfalls, and that it gives you enough to get started.

Further Reading

x

