Chapter 14

XQL, XLink, XPath and XPointer Explained

This Chapter introduces four very important XML-related standards that are all to do with linking and searching of XML documents. At the time of writing, in the autumn of 1999, these standards are not all publushed except as drafts; I have therefore avoided a detailed description, but instead give an overview. XQL and XLink are used to relate one XML document with another, or to point into other documents. XPath and XPointer are ways of referring to specific locations within a single XML document.

Why So Many Standards?

It may seem odd that there are so many different XML-related ways of pointing at things when the Web makes do with Uniform Resource Locators and Names (URLs and URNs). There are two main reasons for this. Firstly, people are doing things with XML that were not commonly done with HTML; secondly, the standards are broken out so that XQL, XLink, XSL and other high-level standards can make use of XPointer and XPath. This is similar to the way in which many other standards documents (including XML 1.0) refer to the URL specification rather than inventing a new pointer mechanism.

The next section is a brief summary of the standards. After that, the standards are each examined in a little more detail, together with notes about how they might relate to database management systems, or to how you might store links in a database.

Before reading the more detailed sections, you might want to check www.w3.org/XML in case the specifications have been published, or one or other of them has changed completely. These standards are too important to omit from this book, but not final enough to use.

There are Perl modules and Java classes to implement most or all of this. There are at least fragments in C, C++, Python and other languages too.

How the Standards Interrelate

XPath is used by both the XML Style Transformation Language (XSLT) and by XPointer; XLink and XQL use XPointer. Figure 14.1 shows this as a quick sketch.

The value of having multiple standards sharing a single way of linking is that people learn it once and implement it once.

Figure 14.1: How the Linking Standards Use Each Other

Overview of XPath

XPath is the XML Path Language; it is a language for addressing (referring to) parts of an XML document. XPath is used by XPointer and also by the XML Style Transformation Language, XSLT. Rather than attempting to cover it in detail here, a few examples will suffice: the standard is quite readable, and is included on the CD-ROM.

NOTE

The XPath standard is published at www.w3.org/TR/xpath; the version referred to here is available at www.w3.org/TR/1999/REC-xpath-19991116 in both HTML and XML.

XPath is a simple expression language. The expressions match part of a document. For example,

/screenplay/act[2]/scene[5]

matches the fifth scene in the second act of a screenplay; if you wanted to match any actor element, anywhere inside a scene but not in the introduction, you might use

//scene/*/actor

There is also a more verbose expression language, with statements like this:

self::node()/descendant-or-self::node()/child::para

It's a little difficult to justify having used a non-XML syntax for all this, but we're stuck with it now.

Overview of XPointer

XPointer is the language to be used as a fragment identifier for any URI-reference that locates a resource of Internet media type text/xml or application/xml.

NOTE

XPointer is published as a working draft at http://www.w3.org/TR/xptr with the latest version at the time of writing being available at www.w3.org/TR/1999/WD-xptr-19991206 in both HTML and XML.

Consider the following URL:

http://www.holoweb.net/~liam/xmldocs#xpointer(id(simon12))

Here, the #xpointer(id(simon12)) part is a fragment using XPointer.

The actual syntax of the fragment identifier (the "#" and everything following it) is defined by XPath, although XPointer also extends XPath. If multiple xpointer() expressions are given they are evaluated in turn from left to right.

When a web browser fetches a URL using HTTP, the fragment identifier is not sent to the server. Instead, the browser fetches the entire document and only then processes the fragment identifier. An alternative is to use an HTTP query, perhaps to a Perl or Java Servlet or to a CGI script:

http://www.fictional.eg/documents/britannica.xml?xptr=xpointer(id("Wales")/descendant::P[1]

This usage is not defined by the XPointer specification, however, and the XML Query Language (see below) might be more appropriate.

An XPointer fragment can refer to XML ID attributes, as in the example, or to other attributes, element names, or even textual content. Note that without access to a Schema or DTD, the browser interpreting the pointer can't tell which attributes are of type ID. Two ways round this are to use the attribute name instead, or to use the HTML compatibility mode. The first following example uses an HTML-stype XPointer:

http://www.holoweb.net/~liam/xmldocs# simon12 (HTML comptibility)

The second example uses two xpointers, the first of which searches for an attribute of type ID, and the second searches for an attribute of name ID. One assumes that only one will succeed.

http://www.holoweb.net/~liam/

xmldocs#xpointer(id(simon12))xpointer(//*[@id="simon12"])

As with XPointer, the latest version of the specification is on the CD-ROM, and the current version is at the World Wide Consortium's web site as given in the note above.

Overview of XLink

XLink is, as the name suggests, an XML-based way of linking between documents.

NOTE

These notes are based on the latest draft of XLink at http://www.w3.org/TR/2000/WD-xlink-20000221; the latest version can be found at http://www.w3.org/TR/xlink in both HTML and XML. XLink is not a published standard at the time of writing.

At the time of writing, there is little software to support XLink directly. None the less, the concepts are important, and XLink is a good way of transporting link information between databases. One XLink is published as a standard, there will probably be support both in browsers and at the library level: expect to see support in Perl, Python, Java, C++ and other languages.

XLink uses XML syntax to create structures that can describe both HTML-style unidirectional hyperlinks and much more powerful multi-way linking constructs.

XLink is activated by a namespace declaration like this:

<bibliography xmlns:xlink="http://www.w3.org/1999/xlink">

 content that uses links

</bibliography>

This example allows the content of the bibliography element to contain XLink hypertext links. You could put the xmlns:xlink attribute on the outermost document element if you wanted, too, to enable XLink in the entire document.

NOTE

Like all XML names, the namespace identifier is case sensitive, and must appear in lower case, as in the example above.

Simple HTML-Style Links

XLink defines a Simple Link to be a "two-ended inline link". Here, inline means that the markup for the link is at one end of a link; two-ended means that it's a link with two ends, of course. HTML examples include A and IMG. In the case of an IMG element, one end of the link is the document containing the IMG markup, and the other end is the image.

A minimal "Simple Link" might look like this:

<A xlink:type="simple"

 xlink:href="sock-weaving-patterns.xml"

>Here are my Sock Weaving Patterns!

If you are always using a validating XML parser, so that the DTD (or Schema) is always read, you could use attribute defaults:

<!ELEMENT A
 (#PCDATA)

>

<!ATTLIST A
 xlink:type CDATA "simple"

>

The xlink:type attribute can take any of the following six values:

simple
the markup is a simple link, as in the above example.

extended
the markup is an extended link, as described in the next section.

locator
a locator is part of an extended link.
arc
an arc is the imaginary line connecting two end-points of a link; arcs have a direction.
resource
a resource is something pointed to by a link.

title
a title can be used to describe a link, rather like "alt text" for an HTML image.

The actual markup used will probably change before this book is published; the draft used here is on the CD-ROM, but see the www.w3.org web site for the latest version.

Extended Links

Extended Links are all non-Simple links. In particular, an Extended Link doesn't need to be in the same document as either end of a link, and is not restricted to having two ends. You can use extended links to make a file that, when parsed, causes links to appear between two entirely different documents.

If there were software around to handle Extended Links, you could use a database to store all of your links, and create an XML file on the fly that used XLink to represent them. Each link would use XPointer to refer to specific points in the target document.

Figure 14.2 shows some sample scenarios for XLink. Although this is important material, there didn't seem any point including more detail than this until the standard was published. If you look at coverage of XLink in other books, please check that the material is up to date. A good online tutorial is that of Rusty Harold at http://metalab.unc.edu/xml/books/bible/updates/16.html, although I found it a little on the dry side.

Figure 14.2: Extended Link Scenarios

Overview of XQuery

The XML Query Language, XQuery ,is a database query language for XML, rather like SQL. XQuery is also called XQL, although at one time XQuery, XML Query and XQL were three different proposals.

At this point, there isn't even a public draft for the XML Query Language. Members of the working group have made sample implementations, and there is an interesting Java implementation by Howard Katz, <howardk@fatdog.com>. There is a web site at http://metalab.unc.edu/xql/ which has pointer to a mailing list and mentions some more implementations.

The XML Query Language is actually very like XPath, described above. The differences, although minor, are intended to make it possible to use XQuery

There is a tutorial at http://metalab.unc.edu/xql/xql-tutorial.html that's quite helpful; it contains the following example, which shows how multiple conditions can be combined with "and" to form a more complex query:

front/author='Theodore Seuss Geisel'[@gender='male' and @shoesize='9EEEE']

The example might match the following XML fragment:

<front>

 <title>....</title>

 <author

 gender="male"

 socks="argyle"

 shoesize="9EEEE"> Theodore Seuss Geisel</author>

 . . .

</front>

The current XML Query syntax is not very SQL-like; a more SQL-like approach might be:

SELECT front FROM docs

 WHERE front.author LIKE ' Theodore Seuss Geisel'

 AND front.author.attr.gender = 'male'

 AND front.author.attr.shoesize = '9EEEE';

Unfortunately, SQL doesn't easily handle the ideas of containment and sequence, and doesn't have the concept of a value being different from an attribute value. Using the same syntax as other XML standards is probably more important than using something similar to, but not the same as, SQL.

If you are considering implementing a query interface to an XML database, you should look at XML Query before inventing your own language.

Related Standards

There are a number of other XML-based standards to do with linking, of which the most useful and widely implemented is the Resource Description Framework (RDF). Several of these standards are listed here for reference.

The Resource Description Framework (RDF)

We shall return in more detail to RDF in Part Four of this book. RDF is important because it is widely used and implemented. The specification is difficult to understand, but the idea is simple.

An RDF document describes relationships between a group of other documents or resources. The description can be hierarchical, and can represent relationships between groups of documents. Some typical relationships are Author, Table of Contents For, Entitled, and Contains. RDF is not intended as a way of marking up hypertext links, so it does not compete with XLink. Its original purpose was to describe a web site in sufficient detail for visualization tools such as the Cyberbolic Map used by SoftQuad HoTMetaL and the expanding pane on the left side of a Microsoft Internet Explorer screen. It has since been used by web search engines, by the Red Hat Linux package manager, by Netscape, and in a host of other applications.

HyTime

The International Organisation for Standards (ISO, not an acronym) produced a standard method of representing links using SGML. The standard is complex, difficult to read, and, like all ISO standards, must be purchased for money on a paper copy. HyTime has not been widely adopted, but some of the ideas have been influential; it is far more powerful than any of the other approaches mentioned here.

You can purchase a copy of HyTime from your national standards body, probably for approximately US$200.

Topic Maps

Topic Maps were an offshoot of HyTime. They use a small subset of HyTime links to accomplish much the same thing as RDF. Since Topic Maps is an ISO standard, you have to purchase it from your local standards body.

In practice, topic maps seem unlikely to displace RDF, since they offer little extra functionality and are not an open standard.

Links and Databases

This section gives some ideas for ways to use XML links and databases together.

Link Management

Automatic Linking

Suppose you've just been given an encyclopedia to convert to XML and publish on the Web. You can convert each article to XML using a combination of Omnimark and Perl, but the result is fairly boring. You want to insert links, so that whenever an article title is mentioned, it becomes a link to that article. Since there are 96,000 articles, you need to avoid editing the articles by hand.

One solution is to make a database of all the article title, and then, for each article, scan for each article title in turn and mark it up as a link wherever it occurs. There are two problems with this approach. Firstly, it's slow; secondly, and more importantly, most of the links will be wrong! An encyclopedia entry for "Green" doesn't mean every occurrence of "Green" should be a link.

For a transcription of an 18th century dictionary of thieving slang, the author experimented and ended up using an in-memory hash table; for an Internet Relay Chat (IRC) glossary, which gets updated on the fly, a text retrieval package was used. For an encyclopedia, a database of article titles might be converted to a dbm database for the purpose of linking, with text retrieval used for adding links. The following two sections consider both of these approaches.

We will leave the problem of incorrect links unsolved. Some possible approaches include

· marking articles as not suitable as targets for inserted links

· checking that the articles have some keywords in common, and flagging ones that don't for human inspection

· checking category names, and marking links between categories as requiring intervention.

In both the dictionary of thieving slang and the IRC glossary, the wrong links were not a problem; the material is designed to be browsed randomly, so a few random links just add to the fun.

AutoLinker in Memory

The Perl script below reads the file "dict.xml", generates an HTML page for each dictionary entry, and adds links to the HTML wherever it can.

A sample entry from the dictionary looks like this:

<entry><title>BACON</title>

<p>the Prize, or whatever kind

which Robbers make in their Enterprizes.

<eg>He has saved his Bacon</eg>; i.e. He

has himself escaped with the Prize,

whence it is commonly used for any

narrow Escape.

<eg>The Cove has a bien

squawl to maund Bacon</eg>; i.e. he has a

good Voice to beg Bacon; used to jeer

a bad Voice, or an indifferent Singer.

<eg>The Bacon Sweard rakes in his Throttle</eg>;

<i>i.e.</i> the Sweard of the Bacon sticks in

his Throat; used to a person who has

Hoarseness, or one, who at their Merry-Meetings, excuses himself from

Singing, on pretence of a Cold.</p></entry>

The HTML for this entry is shown in Figure 14.888, as rendered by Netscape's browser.

Figure 14.888: BACON, in a 1736 dictionary

Here is most of the Perl that accomplishes this. The full code is on the CD-ROM and also at www.holoweb.net/~liam/dict/ if you're interested. There is enough here for you to reuse in your own projects, with a few tedious details removed to save paper.

#! /usr/local/bin/perl -w

use strict;

sub main
{

 # convert dict.sgml into HTML files.

 #

 # there are several steps:

 #

 # (1) read dict.sgml and build in-memory index and entries hashes

 # (this currently does not use XML::Parser but should)

 #

 process_dict_file();

 # (2) create a directory structure,

 # with html in subdirectories A B C... H, IJ, K.. T, UV, W,...Z

 #

 create_directory_structure();

 # now write the indexpages for categories

 write_category_pages();

 # (3) process the entries to insert links between pages

 # (4) write out the HTML (these two steps are combined,

 # because they are done on an entry-by-entry basis)

 write_html_with_links();

 # (5) write out the index pages in each subdirectory

 #

 write_index_pages();

 # (6) write out the top-level page, index.html

 #

 write_index_html();

}

The subroutine main() is called from the very end of the script, after all of the initialization is done.

The next section of code handles reading the dictionary. The letters array stores the letters of the alphabet, because the dictionary uses the 18th century collating sequence in which I and J sort together, as do U and V.

my @letters = (

 "A", "B", "C", "D", "E", "F", "G", "H", "IJ", "K", "L", "M",

 "N", "O", "P", "Q", "R", "S", "T", "UV", "W", "X", "Y", "Z"

);

my %entries = ();

my %InCategory = ();

sub process_dict_file()

{

 my $thisLetter = "-";

 while (<>) {

 # remove comments

 s/<!--.*?-->//g;

 if (!/<entry/i) {

 # capture the title(s) for the entry

 if (/<letter[^<>]*>\s*<title>([^<>]+)<\/title>/) {

 $thisLetter = $1;

 $thisLetter =~ s/[^A-Z]//g;

 next;

 }

 if (/./) {

 if (/<\/letter>\s*$/) {

 next;

 }

 }

 next;

 }

 # build the entry up into a string:

 s/^.*(<entry)/$1/;

 my $entry = $_;

 while ($entry !~ /<\/entry/i) {

 chomp($entry);

 $entry .= ' ';

 my $rest = <>;

 if (!defined($rest)) {

 die "end of file inside entry";

 }

 $entry .= $rest;

 }

 chomp($entry);

 $entry =~ s@(</entry>).*$@$1@i;

 saveEntry($entry, $thisLetter);

 }

}

A couple of utilities for file handling: create_directory_structure
sub create_directory_structure()

{

 foreach (@letters) {

 mkdir("$_", 0755) || die " can't create directory $_: $!";

 }

}

my %Seen = ();

my %SortKey = ();

my %Letter = ();

sub mkFileNameFromTitle
{

 # this is a fairly common thing to do: given the content of

 # an XML element, make a unique filename.

 my ($title, $sortas) = @_;

 my $file = $title;

 # trim leading/trailing spaces:

 $file =~ s@^\s+@@;

 $file =~ s@\s+$@@;

 # remove italic prefix or postfix:

 $file =~ s@^<i>.*?</i>\s*([^<>].*)$@$1@;

 $file =~ s@^(.*?)<i>.*?</i>\s*$$@$1@;

 # strip tags:

 $file =~ s@<[^<>]*>@-@g;

 # turn unacceptable characters to minus signs:

 $file =~ s@[^a-zA-Z0-9.]@-@g;

 # remove trailing, leading and multiple minus signs:

 $file =~ s@--+@-@g;

 $file =~ s@^-+@@;

 $file =~ s@-$@@;

 # remove leading to, a or the

 $file =~ s@^(a|the|to|an)-@@i;

 # ensure that the filename is unique

 my $n = 0;

 my $name = $file;

 while (exists($Seen{$name})) {

 $n++;

 $name = $file . "-${n}";

 }

 # remember the name so we don't recreate it:

 $Seen{$name} = $title;

 if (!defined($sortas)) {

 $sortas = $name;

 }

 $sortas =~ tr/UuIi/VvJj/;

 $SortKey{$name} = $sortas;

 return $name;

}

sub saveEntry($$)

{

 my ($entry, $thisLetter) = @_;

 # my $useBrace = ($entry =~ /title brace=\"right\"/);

 my @targets = ($entry =~ /<target[^<>]*>(.*?)<\/target>/g);

 my @titles;

 while ($entry =~ /<title([^<>]*)>(.*?)<\/title>/g) {

 my ($atts,$text) = ($1, $2);

 # an ignored entry isn't a target for links:

 if ($atts !~ /link=\"ignore\"/) {

 push @targets, $text;

 }

 push @titles, $text;

 }

 if ($#titles < 0) {

 die "missing title in $entry";

 }

 # expand XML entities (& etc.) in the titles:

 @titles = map { handleEntities($_) } @titles;

 my $sortas = undef;

 if ($entry =~ /^<entry[^<>]* sortas="([^<>"]+)"/) {

 $sortas = $1;

 }

 if ($entry =~ m@^\s*(?:as[,;:\s]*)?<eg>(.*?)</eg>@) {

 push @targets, $1;

 }

 my $filename = mkFileNameFromTitle($titles[0], $sortas);

 my $text = $entry;

 $text =~ s@^.*?<p>(.*)</entry>@$1@;

 $text =~ s@^\s*@@;

 $text = handleEntities($text);

 # save the body, the titles and the filename

 my %h = (

 'body' => "$text",

 'titles' => [@titles],

 'targets' => [@targets],

 'filename' => $filename

);

 foreach (@targets) {

 addPattern($_, $filename);

 }

 push @{$entries{$thisLetter}}, \%h;

}

XML text content can include entity references like & and often does, so we have to handle it. It's convenient to handle other inline elements here too, although it might be better to use XSL to do that, or to have a hash table to map start/end elements into HTML.

sub handleEntities($)

{

 my ($text) = @_;

 # entities and non-html elements mapped to html:

 $text =~ s@\&stress;@\'@g;

 $text =~ s@\&hy;@\xad@g;

 $text =~ s@\&c;@<i>\&c.</i>@g;

 $text =~ s@<eg>@<i class="eg">@g;

 $text =~ s@</eg>@</i>@g;

 $text =~ s@<meaning>@<i class="meaning">@g;

 $text =~ s@</meaning>@</i>@g;

 return $text;

}

Writing out the HTML with the embedded links is the most interesting part. This algorithm turns each entry's title into a perl substitute statement that, when executed, replaces the title with a link to the file containing the corresponding definition. We then run each of the substitutions in turn over every defintion.

For performance, we compile the regular expression only once that will be used to match titles in entry bodies; getReadyForPatterns() (below) does that.

sub write_html_with_links()

{

 my $letter;

 getReadyForPatterns();

 foreach $letter (@letters) {

 my $i;

 my @entryList = @{$entries{$letter}};

 for ($i = 0; $i <= $#entryList; $i++) {

 writeOneFile($letter, $entryList[$i]);

 $prev = $h;

 }

 }

}

my $putLinksInto;

sub writeOneFile($$$$)

{

 my ($letter, $this, $prev, $next) = @_;

 open(OUT, "> $$this{filename}") ||

 die "can't create $$this{filename}: $!";

 $this->{body} = &$putLinksInto($this, $$this{filename});

 mkheader(*OUT, $$this{titles}[0]);

 definitionBody(*OUT, $this);

 print OUT "</body></html>\n";

 close(OUT) || die "can't close $$this{filename}: $!";

}

Most of the work of creating HTML folders for each definition, with index.html files pointing to all the words, is not shown in this excerpt; it's in the working code if you want it. mkheader() creates the start of an HTML document.

sub mkheader($$)

{

 my ($file, $title) = @_;

 print $file <<EOF;

<html><head><title>${title}</title></head><body

 bgcolor="#EEDDAA"

 text="#330000"

 link="#009900"

 vlink="#CC9999"

 alink="#FF6666"

><blockquote>

EOF

}

sub definitionBody($$)

{

 my ($file, $h) = @_;

 my $body = $h->{body};

 my $title = $h->{titles}[0];

 my $titlesep = ', '; # comes after the title, before body

 my $insideTitle = $title;

 if ($#{$h->{titles}} > 0) {

 $insideTitle = join ', ', @{$h->{titles}};

 $titlesep = '; ';

 }

 print $file "<h1>$title</h1>\n";

 print $file "<p>

 ${insideTitle}";

 print $file "${titlesep}$body</p>\n";

}

sub mkIndex($$)

{

 # not shown, makes index.html

}

my %phrases;

sub addPattern($$)

{

 my ($pattern, $file) = @_;

 $pattern = lc $pattern;

 $pattern =~ s/-/[^a-z]/;

 $pattern =~ s@</?i>@@g;

 $pattern =~ s/'s/(['e]?#)?/g; # turn 's into optional, use # for s

 $pattern =~ s/'d/(['e]?d)?/g; # turn 's into optional

 $pattern =~ s/s\b/s?/i; # allow missing trailing S

 # now turn # back into an s:

 $pattern =~ tr/#/s/;

 # some definitions use "to run", "a sword",

 # but those prefixes (to and a)

 # would not appear in an actual sentence.

 if ($pattern =~ /^(?:to|a|an|the)\s+[a-z]/) {

 $pattern =~ s/^(?:to|a|an|the)\s+//;

 }

 # finally, munge whitespace into a pattern to recognise whitespace:

 $pattern =~ s/\s+/\\s+/g;

 if (defined($phrases{$pattern})) {

 print STDERR "duplicate: $pattern: $phrases{$pattern}, $file\n";

 return;

 }

 $phrases{$pattern} = $file;

}

fixLinks:

the problem:

dimber-damber turned into:

<a href="../D/<a href="../D/DIMBER.html"

>DIMBER-Damber.html">

<a href="../D/DIMBER.html"

>Dimber-Damber

#

i.e. the links nested...

the solution:

Dimber-Damber

#

sub fixLinks($)

{

 my $text = shift;

 # first, remove markup from href attributes:

 while ($text =~ /href="[^"<]*<a/) {

 $text =~ s{

 <a([^<>]*)href="([^<"]*)<a[^>]*>(.*?)

 }{<a${1} href="$2$3}xg;

 }

 # now, nested anchors

 while ($text =~ m@<a[^<>]*>([^<]|(<[^a/]))*<a@) {

 $text =~ s@(<a[^<>]+>)([^<>]*)<a[^<>]*>(.*?)@$1$2$3@g;

 }

 return $text;

}

sub getReadyForPatterns()

{

 # build up a perl subroutine called putLinksInto, in a text

 # variable, then eval that variable to define the subroutine.

 # The effect is as if xthe subroutine was in the source, with

 # all 1500 titles, e.g.s#bacon#bacong#

 # This means the expressions only get compiled once, for a huge

 # performance increase.

 my @patterns = sort {

 # put longer patterns first

 length($b) <=> length($a) ||

 $a cmp $b

 } keys(%phrases);

 my $sub = "\$putLinksInto = sub {\n";

 $sub .= 'my ($entry, $file) = @_;' . "\n";

 $sub .= 'my $text = $entry->{body}; ' . "\n";

 $sub .= 'study $text;' . "\n";

 foreach (@patterns) {

 print STDERR ".";

 $sub .= "if (\"$phrases{$_}\" ne \$file) {" . "\n";

 $sub .= '$text =~ s@\b' . ${_} .

 '\b(?!###)@<a class="x" href="../' .

 $phrases{$_} .

 '">$&###@gsmi;' . "\n";

 $sub .= '}' . "\n";

 }

 $sub .= '$text =~ s/###//g;' . "\n";

 # sometimes we substitute inside a link by mistake:

 $sub .= 'return fixLinks($text);' . "\n";

 $sub .= '}' . "\n";

 # now evaluate the string to define &putLinksInto():

 eval($sub);

}

at the end of all definitions, call main():

main();

AutoLinker With Text Retrieval

We'll describe this in more detail in the next chapter, since it uses two kinds of database and is therefore a hybrid solution. The idea is to use text retrieval to find all the article titles in a given article, and then to turn the result into XLink or HTML link markup. It's harder to set up, but more powerful.

Visualizing Relationships

If you have all of your links (or RDF relationships) stored in a database, it's not too hard to start drawing graphical representations of them. You could use the Perl GD module, generate data for a Java applet perhaps.

Figure 14.999 shows the links in a glossary of terms used in Internet Relay Chat conversations. The glossay is at www.valinor.sorcery.net/glossary/ with links inserted automatically using the author's text retrieval package, lq-text. In this case, the Java GraphLayout demo was used (GraphLayout is part of the Java software development kit) and the links were generated by a Perl CGI script that looked at the HTML, rather than a database.

Figure 14.999: Links between Glossary Items

Summary

Links in XML can involve more than one arc and more than two ends; they can be more powerful than HTML links with only slightly more complex markup. The standards that say how the links work are still evolving but may be final by the time you read this book. Since XML links can be external to the documents involved, you can store them in a database. The Perl code showed one way to add links on the fly to documents, using a database (an in-memory hash table in this case) of link targets. Another way will be shown in Chapter 18.

The next chapter discusses hybrid systems, using more than one database or strategy at the same time. These systems can be a challenge to create, but can give very high flexibility and performance.

