Chapter 18

Sketches from the Forge: Sample Applications

This chapter introduces two worked examples that tie together some of the earlier discussions. The first is a version of the AutoLinker that uses text retrieval to insert links into generated XML or HTML documents on the fly. The second example is a discussion of the BookWeb application that has been mentioned in several chapters.

This book is a toolkit and not an application shelf: the printed examples are not complete, because they're intended to show how to fit components together and use technology, not to be applications. None the less, the AutoLinker has been in production use in one form or another for several years, and working code is at www.holoweb.net/~liam/ where you can also find a pointer to the latest version of BookWeb. It's a difficult decision: whether to give complete but tiny examples, or whether to give a higher-level view of entire applications that are large enough to be interesting. This book is a compromise: there are some small working examples, and there are sketches. This chapter is deliberately sketchy in order to focus on how parts work together, so when you are reading, try to imagine several different ways of completing the sketches.

The AutoLinkeed Glossary

The AutoLinker adds hypertext links automatically and generates HTML, taking (phrase, definition) pairs that might have come from a database, an XML document or even a plain text file. When a definition mentions a term that's defined, the AutoLinker adds a definition to that term. We've seen a Perl version of the AutoLinker before, written to handle a dictionary marked up in XML. In that application the text was static: the dictionary was published in 1736.

The AutoLinker is particularly useful for a glossary that gets updated from time to time. When a new entry is defined, we want any other entries that mention that term to be linked automatically. For example, the entry for "Electronic Mail" might also mention Usenet; if, later, a definition is added for Usenet, we need to go back and change the entry for Electronic Mail to contain a link to the entry to Usenet, not just a reference. The AutoLinker will do that for us automatically. All we have to do is enter a plain text definition of Usenet, and everywhere Usenet is mentioned, there's now a link.

Sometimes this can be disconcerting: the AutoLinker doesn't check for words with multiple meanings, so the phrase "file this away for future reference" could end up having links to computer storage (file) and maybe even to online stock trading (future). In a small glossary this doesn't really matter: people enjoy exploring the links even if they're a little unexpected sometimes, and they learn as they do so. In a large glossary you'd need to have ways of preventing some of the links from being inserted. The Perl AutoLinker at www.holoweb.net/~liam/xmldb/ supports an XML attribute on an entry to say, "this entry is never a target for an automatic link", and also markup around a phrase to say, "don't link this phrase anywhere", or, "link this phrase here".

Use Cases

The following Use Cases give the main ways in which the glossary was expected to be used. In fact, most people visiting the glossary do so because they did a web search looking for an explanation of a phrase. As a result, the glossary index is consulted much less than one would expect, and links within the glossary items are followed rather more. The Use Cases here don't reflect that, except for a mention of "What You Might Have Wanted" links that were added to the glossary after observing how it was used.

The Use Cases are described informally rather than in any specific notation; there are formal methodologies for determining use cases, and for a large project you should investigate them.

View the Index

1. The user sees a list of all glossary terms.

2. The definition terms are highlighted as links.

3. Optionally, the index may be split alphabetically.

4. The definitions are not shown.

The index is shown in Figure 18.1, Glossary Index.

Figure 18.1: Glossary Index

View an Entry

1. The user views the Index, as above.

2. The user chooses an entry by following a link from a highlighted term.

3. The definition of that term is shown, as follows:

· The term being defined or explained is clearly marked;

· The definition is shown;

· Within the definition, any terms that are themselves defined in the glossary are highlighted as links to the corresponding definitions;

· There is a navigational link back to the Index;

· There may also be "What's Related" or "You Might Have Wanted..." links in a list after the definition. These links must be clearly marked so they are not mistaken for part of the definition.

Figure 18.2 shows a sample glossary entry.

Figure 18: Sample Glossary Entry

Edit an Entry

1. The user views an entry;

2. The user activates an "edit" button or link;

3. The definition is presented in an editable HTML form such as that shown in Figure 18.3;

4. The user makes any desired changes, including adding links 

5. The user activates a "save changes" button or link;

6. The glossary entry is saved;

7. If the term being defined was changed, links in other entries to the old term are removed, and links to the new term are added where necessary;

8. Links are added to the new definition.

9. If necessary, the Index page is changed;

10. The user is presented with the new definition, or with the updated index page (implementation choice).

Figure 18.3: Editing a glossary Entry

Create an Entry

1. The user views the Index (to help them see the entry isn't already there);

2. The user selects a "new entry" button or link;

3. A blank HTML form is presented;

4. The user creates the entry;

5. The user activates a "save changes" button or link;

6. The new entry is checked for required fields and to make sure it doesn't already exist, and, if incorrect, an error is issued: return to step (4), but retaining data;

7. The entry (having passed all required checks) is saved; links are added to this term in all other entries mentioning the term;

8. Links are added to the new entry;

9. The user is presented with the new definition, or with the updated index page (implementation choice).

Delete an Entry

1. The user views the entry to be deleted;

2. The user activates a "delete entry" link or button;

3. The user is asked to confirm the action;

4. The entry is deleted;

5. Links to that entry are removed from other definitions;

6. The user is presented with a confirmation message and returned to the index.

Implementation Overview

Most of the Glossary is a pretty standard Web Application. The obvious tools to use include the various Perl CGI modules from CPAN, or a Java Servlet with session tracking. The author's actual implementation used Perl, but predated the CGI module.

The glossary terms could be stored in an SQL database, in a flat file, or even in a dbm-style database. If you choose to use a flat file or dbm, you'll have to be careful to make regular backups, and to ensure that the files were not open for writing while a backup was taking place. Another implementation might use an XML file for each glossary entry.

The Use Cases implied that links were inserted whenever an entry was saved. In fact, it could be done at any time before showing the entry to the user, so another option is to insert links on the fly. You can easily support customized "themes" that way, too, to share a glossary between multiple sites. The main difficulty is making sure that web search engines still index all of your glossary terms. Search engine crawlers often don't follow links that include ".cgi" in the URL, so you'd need to hide the fact you were using CGI scripts. This is not a problem with Servlets, of course, and you could also use a script alias or a CGI script that uses a QUERY_PATH parameter.

We'll assume that you generate static XML pages containing all of the links, just to have something concrete to describe; these XML pages are then converted to HTML on the fly for browsers that don't support XML directly. Other browsers see XML with an XSL style-sheet.

NOTE

The Internet Relay Chat Glossary used as an example actually makes static HTML files, partly to save load on the server and partly because the implementation predates XML being published as a specification. But you can't tell from the outside.

Implementation One Step at a Time

The next few sections will show how a text retrieval database (lq-text, of course) is used to insert the links. The details of the CGI interface to view and store entries are not shown here. You might find it helpful to consult the online documentation for lq-text while you read this chapter. You can find it at www.holoweb.net/~liam/lq-text/ if you are interested, but it's not necessary in order to understand what's going on.

Extracting Text and Making an Index

When the AutoLinker is started from scratch, it needs a text retrieval database.

Each plain text (or XML) glossary entry is saved to a separate file in a temporary directory. The filenames used, however, are those wanted for the final glossary URLs.

A list of files is made, and fed to the indexing program, lqaddfile; this makes an index (in a binary format) of all the words in all of those files. The lq-text configuration file used looks like this:

IndexNumbers On

MinWordLength 1

MaxWordLength 20

IgnoreHTMLhead True

DOCPATH /usr/home/liam/public_html/valinor/tmp.gloss:.

common /dev/null

The IgnoreHTMLhead entry makes lq-text not index words found until the start of the document body, or until a special marker. The other entries should be self-explanatory, or can be ignored if you aren't actually doing this yourself.

After this has been done, it's not necessary to rebuild the entire index when a single entry is added or changed. Instead, lqunindex can be run on the old entry, if there was one, and then lqaddfile run on the new one.

To prevent the index from getting too fragmented or large, a monthly cron job could be used. It would have to use a lock file to keep the CGI applications waiting while it renamed the lq-text index directory, and could then remove the files inside the directory safely while the AutoLinker happily built a new one.

Since lq-text does not need to refer to the text files once the index is built (for our application at least!), they can be removed. You might want to keep them, though, as described under "Searching the Glossary" below.s

Inserting Links Into One Document

The AutoLinker inserts links into a copy of one of the temporary files. If you removed the temporary files after making the index, you'll need to recreate it at this stage. It must be byte-for-byte identical to the version you fed the AutoLinker to be indexed.

The AutoLinker is given a list of all of the possible link targets (the terms being defined); it runs each term as a query to see if it occurs in the document of interest.

The result of that stage is a list of matches that occur in the document being linked; the matches for each term look like this:

2 1 120 33 ChanServ.html

2 1 116 37 EFnet.html

2 1 113 46 IRC-Network.html

2 2 0 48 IRC-Server.html

2 1 119 52 IRC.html

2 2 0 52 IRC.html

2 2 31 64 MemoServ.html

. . .

The fields are Number of Words In Phrase (two in this case, for "IRC Network"); Block In File and Word in Block, which locate the match; File Number and Filename. The actual phrase is appended to each match using sed, giving a list of all the matches for each glossary term. This long list is then sorted by file number so that all the matches for a given document (MemoServ.html, for example) appear together, rather than all of the matches for a given glossary term.

Hypertext links are then added to this list of matches, using a short perl script that also removes overlaps (see below). The result of that is a list of matches like this:

2 1 120 33 ChanServ.html #<a href="ChanServ.html">##</a>

2 1 116 37 EFnet.html  #<a href="EFnet.html">##</a>

2 1 113 46 IRC-Network.html  #<a href="IRC-Network.html">##</a>

2 2 0 48 IRC-Server.html  #<span class="glossref">##</span>

2 1 119 52 IRC.html  #<a href="IRC.html">##</a>

2 2 0 52 IRC.html  #<a href="IRC.html">##</a>

2 2 31 64 MemoServ.html  #<a href="MemoServ.html">##</a>

. . .

Next, we use the lqsed program to combine the list of matches with the original document. This is a program that reads matches augmented with left and right replacement strings, and prints a copy of the matched document with each match surrounded by the corresponding left and right strings. This produces the following result for the entry "IRC Server":

<DL><DT><span class="glossref">IRC Server</span></DT>
<DD>A <a href="server.html">server</a> (q.v.) that is part of an <a href="IRC-Network.html">IRC network</a>; most <span class="glossref">IRC servers</span> are on computers running some version of the <a href="Unix.html">Unix</a> operating system, such as <a href="Linux.html">Linux</a>, FreeBSD or Sun's Solaris. The most common <span class="glossref">IRC Servers</span> are from <a href="EFnet.html">EFnet</a>, <a href="Undernet.html">Undernet</a> and <a href="DALnet.html">DALnet</a>, and are called hybrid, ircu and <a href="ircd.html">ircd</a> (or "Bahamut") respectively.</DD></DL>

There's a lot of markup there, and you can see why one wouldn't want to maintain it by hand!

Overlapping Matches

An important problem to avoid is exemplified by the case where you have an entry for "Internet Relay Chat" and another for "Chat Server". The resulting markup might look like this:

<a href="internet-relay-chat.html">Internet

Relay <a href="chat-server.html">Chat</a> Server</a>
This is no good at all, since overlapping hypertext links are not allowed in HTML at all, and are at best confusing. We need to avoid adding the markup in bold.

It so happens that lqkwic can generate byte offsets in the match list, and this makes it easy to remove overlapping matches. Another approach is to use an option to the lqsed command to prevent overlaps.

Other text retrieval Packages

If you are not using lq-text, the same scheme should still work but you may have to re-implement the lqsed program.

One or All?

It turns out to be pretty fast to process the entire glossary every time links are updated, so that's what the AutoLinker does for the Internet Relay Chat glossary. For other data it may be faster to update just a single document. If performance was a real issue, most text retrieval packages (including lq-text) support a C or C++ API.

Searching the Glossary

Since you've built an index to all of the files, you might as well use it! Modern text retrieval packages might already include web interfaces, or it might only be a matter of an hour or two to write one.

Other Applications of the AutoLinker

Although an interactive web-based glossary is a fun example, and has the advantage you can go and try it out yourself, there are many other applications where mining data for links can be useful.

Document Conversion

The author was once faced with the problem of converting an encyclopedia into SGML, including all the cross-references. The cross-references were generally marked with See, or See Also, and a Perl script easily found them. The problem was then how to find the right entry. In most cases it was unambiguous: the "See Also:" marker might be followed by "France" or "Sock Manufacture". But in a few thousand cases there were multiple words after the marker, and most of those required human intervention.

Text retrieval could show which of the several candidate entries had the most words in common with the source containing the marker, and the candidates were sorted accordingly. As a result, the human hand-work was reduced drastically: the correct link was almost always the first one.

Textual Analysis

This sounds awfully academic at first. Consider, though, being able to answer questions like, "which of the companies mentioned in this annual report have high stock values today?" or "which cities are mentioned in our survey but have no database entry?", or, "which links to repair tasks point to tasks with no words in common with the paragraph containing the link?". Some of these questions can be answered with tools such as Perl and Omnimark, and some with text retrieval.

AutoLinker Summary

Links between a database and a text retrieval system enable whole areas of exploration that are difficult with only one or the other technology. The ability of the text retrieval system to find embedded phrases very quickly is a good complement to the database's ability to sort and select from items based on exact values.

Storing linked documents as XML can provide a great flexibility in how the information is used and delivered.

A good text retrieval package belongs in your toolkit alongside a working knowledge of SQL, even if you don't them every day. An understanding of how to use the tools together to process links and metadata is even more useful.

BookWeb

BookWeb is a database application for identifying books based on names mentioned in them. People submit lists of names from books, and as these are added to the database, the application's utility grows.

NOTE

BookWeb is currently looking for a better name, but www.holoweb.net/~liam/xmldb/ will have a pointer to the new name and URL.

There's only room in this book for a fraction of the ideas behind BookWeb. In this chapter, we'll concentrate on how XML and databases are used. The software is evolving, too: design changes may mean the actual application is implemented differently.

At the time of writing, BookWeb uses a relational database (mySQL) to store the tables given in Part One of this book. A web interface uses PHP for database queries.

XML is used in two areas: firstly, to store book reviews and other longer prose. Secondly, to store the lists of names that users enter, until a human moderator approves them. The XML is in both cases stored outside the database. The lists are written by a PHP script, and are processed (once approved) using a Perl program with XML::Parser and the Perl DBI module.

Summary

We have looked in some detail at the AutoLinker, because it's an unusual application. We've skipped very quickly past BookWeb because the technology is very "standard". Perhaps it should have been the other way round: most of your projects are likely to resemble BookWeb more than the AutoLinker. If you've read this far, though, you can probably go out and write most of BookWeb or similar projects in an afternoon. Now is exactly the time to do that!

This is the end of the main book. The remaining chapters in Part Five contain pointers to online material, notes on downloading and configuring it, some screenshots, and some actual documentation. The instructions stop here and the tools follow.

