Chapter 26: Perl and XML

This chapter gives some documentation for most of the major XML modules for use with Perl, and also the DBI database module. You will find most or all of these Perl modules on the Comprehensive Perl Archive Network, CPAN, at http://www.cpan.org/ or http://www.perl.org/cpan/. The URLs for the major archives are given at the end of the chapter, as usual. If you're running Red Hat Linux, an RPM web search for XML will find most of them: see Chapter 20 for help on running gnorpm. If you aren't, you should investigate the CPAN module that comes with Perl; the command perldoc CPAN is a good place to start. That module can download and install packages automatically, as described in Chapter 20.

Perl Packages for XML

Table One lists the XML-related modules that are on CPAN at the time of writing. Not all of these are documented here: some are unfinished, some are unlikely to be of interest or are specialised, and some are changing too fast for the documentation to be useful in a book. The documentation printed here is intended to be enough for you to decide what to consider using, and how to get it. The primary URL for this section is http://www.cpan.org/modules/by_category/XML/ ???? XXX check

Note that some modules, such as XML::Grove, are available separately as well as in part of a larger module; it's a little confusing, but that's because frenetic development and wild excitement are not always compatible with total order and harmony. Perhaps by the time this book is published, the distributions will be easier to understand.

In some cases, I have added comments [like this]; in a few cases I have used "README" files instead of the formal documentation, usually because the documentation wasn't ready. There's a lot of activity in the Perl XML community right now; see the very end of this rather long chapter for mailing lists and URLs to get the most up to date information. The best way to use the documentation reprinted here is to give you an idea of what the modules do, and whether you want to spend the time to download and install them.

[@@NOTE: after the table, most of this chapter is taken from external documentation; there are restrictions on changing the material, but it's OK to reformat non-code sections somewhat. I have made all of the methods @H4 even though in some manuals there are no @H3 titles. I have used @GL for parameter descriptions, with a tab after the term, and an @H1 for the start of each separate package. Liam @@]

Table 1: Perl XML Packages

Module
Package to Download

Apache::MimeXML
Apache-MimeXML

CGI::Formalware
CGI::Formalware

CGI::XML
CGI-XML

CGI::XMLForm
CGI-XMLForm

Data::Grove
libxml

Data::Grove::Visitor
libxml

DBIx::XML_RDB
DBIx::XML_RDB

Frontier::RPC2
Frontier-RPC

XML::CGI
CGI-XML

XML::DOM
XML-DOM

XML::DOM::UTF8
XML-DOM

XML::Dumper
XML-Dumper

XML::ESISParser
libxml

XML::Edifact
XML-Edifact

XML::Encoding
XML-Encoding

XML::Generator
XML-Generator

XML::Grove
XML-Grove

XML::Grove::AsCanonXML
XML-Grove

XML::Grove::AsString
XML-Grove

XML::Grove::Builder
XML-Grove

XML::Grove::IDs
XML-Grove

XML::Grove::Path
XML-Grove

XML::Grove::PerlSAX
XML-Grove

XML::Grove::Sub
XML-Grove

XML::Grove::Subst
XML-Grove

XML::Grove::ToObjects
XML-Grove

XML::Handler::Sample
libxml

XML::Parser
XML-Parser

XML::Parser::DOM
XML-DOM

XML::Parser::Debug
XML-Parser

XML::Parser::Objects
XML-Parser

XML::Parser::PerlSAX
libxml

XML::Parser::Stream
XML-Parser

XML::Parser::Subs
XML-Parser

XML::Parser::Tree
XML-Parser

XML::Perl2SAX
libxml

XML::QL
XML-QL

XML::Registry
XML-Registry

XML::SAX2Perl
libxml

XML::Writer
XML-Writer

XML::XQL
XML-XQL

Apache::MimeXML

A mod_perl mime encoding sniffer for XML files

SYNOPSIS

Simply add this line to srm.conf or httpd.conf:

PerlTypeHandler Apache::MimeXML

Alternatively add it only for certain files or directories using the standard Apache methods. There is about a 30% slowdown for files using this module, so you probably want to restrict it to certain XML locations only.

DESCRIPTION

An XML Content-Type sniffer. This module reads the encoding attribute in the xml declaration and returns an appropriate content-type heading. If no encoding declaration is found it returns utf-8 or utf-16 depending on the specific encoding.

CONFIGURATION

There are a few small configuration options for this module, allowing you to set various parameters.

XMLMimeType

Allows you to set the mime type for XML files:

PerlSetVar XMLMimeType text/xml

That changes the mime type from the default application/xml to text/xml. You can use this on a per-directory basis.

XMLUtf16EncodingBE

Allows you to set the encoding of big-endian (read: normal) utf 16 (Unicode) documents. The default is 'utf-16'
PerlSetVar XMLUtf16EncodingBE utf-16-be

XMLUtf16EncodingLE

Allows you to set the encoding of little-endian utf-16 encoded documents. The default is 'utf-16-le'
PerlSetVar XMLUtf16EncodingLE utf-16-wierd

AUTHOR

Matt Sergeant matt@sergeant.org
LICENCE

This module is distributed under the same terms as perl itself

CGI::Formalware

Not included here

CGI::XML, XML::CGI

Perl extension for converting CGI.pm variables to/from XML

SYNOPSIS

use XML::CGI;

$q = new XML::CGI;

convert CGI.pm variables to XML

$xml = $q->toXML;

$xml = $q->toXML($root);

convert XML to CGI.pm variables

$q->toCGI($xml);

DESCRIPTION

The XML::CGI module converts CGI.pm variables to XML and vice versa.

XML::CGI is a subclass of CGI.pm, so it reads the CGI variables just as CGI.pm would.

METHODS

$q = new XML::CGI

creates a new instance of XML::CGI. You also have access to all of the methods in CGI.pm.

$q->toXML([$root])

where $root is an optional parameter that specifies the root element. By default, toXML will not return a root element.

$q->toCGI($xml)

where $xml is the XML you would like to convert to CGI.pm parameters. Values in the XML will overwrite any existing values if they exist.

NOTE

XML::CGI does not currently handle multiple selections passed from HTML forms. This will be added in a future release.

AUTHOR

Jonathan Eisenzopf <eisen@pobox.com>
CONTRIBUTORS

David Black <dblack@candle.superlink.net>
SEE ALSO

perl(1), XML::Parser(3)

CGI::XMLForm

Extension of CGI.pm which reads/generates formated XML.

This is currently alpha software, and I'm looking for feedback. Note though that it is proving quite stable in our mod_perl environment, so it is ready for production use.

NB: This is a subclass of CGI.pm, so can be used in its place.

SYNOPSIS

use CGI::XMLForm;

my $cgi = new CGI::XMLForm;

if ($cgi->param) {

print $cgi->header, $cgi->pre($cgi->escapeHTML($cgi->toXML));

}

else {

open(FILE, "test.xml") or die "Can't open: $!";

my @queries = ('/a', '/a/b*', '/a/b/c*', /a/d');

print $cgi->header,

$cgi->pre($cgi->escapeHTML(

join "\n", $cgi->readXML(*FILE, @queries)));

}

DESCRIPTION

This module can either create form field values from XML based on XQL style queries (full XQL is _not_ supported -- this module is designed for speed), or it can create XML from form values.

There are two key functions: toXML and readXML.

toXML

The module takes form fields given in a specialised format, and outputs them to XML based on that format. The idea is that you can create forms that define the resulting XML at the back end.

The format for the form elements is:

<input name="/body/p/ul/li">

which creates the following XML:

<body>

<p>

Entered Value

</p>

</body>

It's the user's responsibility to design appropriate forms to make use of this module, although coming later will be a small module that uses my XML::DTDParser to create all the form elements given a DTD.

Also supported are attribute form items, that allow creation of element attributes. The syntax for this is:

<input name="/body/p[@id="mypara" and @onClick="someFunc()"]/@class">

Which creates the following XML:

<body>

<p id="mypara" onClick="someFunc()" class="Entered Value"></p>

</body>

Also possible are relative paths. So the following form elements:

<input type="hidden" name="/table/tr">

<input type="text" name="td">

<input type="text" name="td">

<input type="text" name="../tr/td">

Will create the following XML:

<table>

 <tr>

 <td>value1</td>

 <td>value2</td>

 </tr>

 <tr>

 <td>value3</td>

 </tr>

</table>

SYNTAX

The following is a brief syntax guideline

Full paths start with a "/": "/table/tr/td"
Relative paths start with either ".." or just a tag name.

"../tr/td"

"td"

Relative paths go at the level above the previous path, unless the previous path was also a relative path, in which case it goes at the same level. This seems confusing at first (you might expect it to always go at the level above the previous element), but it makes your form easier to design. Take the following example: You have a timesheet (see the example supplied in the archive) that has monday,tuesday,etc. Our form can look like this:

<input type="text" name="/timesheet/projects/project/@Name">

<input type="text" name="monday">

<input type="text" name="tuesday">

...

Rather than:

<input type="text" name="/timesheet/projects/project/@Name">

<input type="text" name="monday">

<input type="text" name="../tuesday">

<input type="text" name="../wednesday">

...

If unsure I recommend using full paths, relative paths are great for repeating groups of data, but weak for heavily structured data. Picture the following paths:

/timesheet/employee/name/forename

../surname

title

../department

This actually creates the following XML:

<timesheet>

<employee>

 <name>

 <forename>val1</forname>

 <surname>val2</surname>

 <title>val3</title>

 </name>

 <department>val4</department>

</employee>

</timesheet>

Confusing eh? Far better to say:

/timesheet/employee/name/forename

/timesheet/employee/name/surname

/timesheet/employee/name/title

/timesheet/employee/department

Or alternatively, better still:

/timesheet/employee/name (Make hidden and no value)

forename

surname

title

../department

Attributes go in square brackets. Attribute names are preceded with an "@", and attribute values follow an "=" sign and are enclosed in quotes. Multiple attributes are separated with " and ".

/table[@bgcolor="blue" and @width="100%"]/tr/td

If setting an attribute, it follows after the tag that it is associated with, after a "/" and it's name is preceded with an "@".

/table/@bgcolor

readXML

readXML takes either a file handle or text as the first parameter and a list of queries following that. The XML is searched for the queries and it returns a list of tuples that are the query and the match.

It's easier to demonstrate this with an example. Given the following XML:

<a>Foo

 Bar

 <c>Fred</c>

 <c>Blogs</c>

 Red

 <c>Barbara</c>

 <c>Cartland</c>

 <d>Food</d>

And the following queries:

/a

/a/b*

c*

/a/d

it returns the following result as a list:

("/a", "Foo\n", "/a/b", "Bar\n", "c", "Fred"

"c"

"Blogs"

"/a/b"

"Red"

"c"

"Barbara"

"c"

"Cartland"

"/a/d"

"Food"

The queries support relative paths like toXML (including parent paths), and they also support wildcards using ".*" or ".*?" (preferably ".*?" as it's probably a better match). If a wildcard is specified the results will have the actual value substituted with the wildcard. Wildcards are a bit experimental, so be careful ;-)
Caveats

There are a few caveats to using this module:

AUTHOR

Matt Sergeant msergeant@ndirect.co.uk, sergeant@geocities.com
Based on an original concept, and discussions with, Jonathan Eisenzopf. Thanks to the Perl-XML mailing list for suggesting the XSL syntax.

Special thanks to Francois Belanger (francois@sitepak.com) for his mentoring and help with the syntax design.

SEE ALSO

CGI(1), CGI::XML

Data::Grove

Support for deeply nested structures

SYNOPSIS

use Data::Grove;

$object = MyPackage->new;

$root = $object->root;

$rootpath = $object->rootpath;

$tied = $object->add_magic([$parent]);

package MyPackage;

@ISA = qw{Data::Grove};

DESCRIPTION

Data::Grove provides support for deeply nested tree or graph structures. `Data::Grove' is intended primarily for Perl module authors writing modules with many types or classes of objects that need to be manipulated and extended in a consistent and flexible way.

Data::Grove is best used by creating a core set of ``data'' classes and then incrementally adding functionality to the core data classes by using ``extension'' modules. One reason for this design is so that the data classes can be swapped out and the extension modules can work with new data sources. For example, these other data sources could be disk-based, network-based or built on top of a relational database.

Two extension modules that come with `Data::Grove' are `Data::Grove::Root' and `Data::Grove::Visitor'.

`Data::Grove::Root' adds a ``root'' method to grove objects to return the root node of the tree from anywhere in the tree and a ``rootpath'' method to return a list of nodes between the root node and ``this'' node. `Data::Grove::Visitor' adds callback methods ``accept'' and ``accept_name'' that call your handler or receiver module back by object type name or the object's name.

`Data::Grove' objects do not contain parent references, Perl garbage collection will delete them when no longer referenced and sub-structures can be shared among several structures. `Data::Grove::Tied' is used to create temporary objects with parent pointers.

Properties of data classes are accessed directly using Perl's hash functions (i.e. ``$object->{Property}''). Properties defined by `Data::Grove' are ``Raw'' for accessing the raw object from a tied temporary object and ``Parent'' also used by the tied objects. Extension modules may also define properties that they support or use (like Visitor's ``Name'' and ``Content'' properties).

See the module `XML::Grove' for an example implementation of `Data::Grove'.

METHODS

Grove::SubClass->new(PROPERTIES)

Return a new object blessed into the SubClass, with the given properties. PROPERTIES may either be a list of key/value pairs, a single hash containing key/value pairs, or an existing `Data::Grove' object. If an existing `Data::Grove' is passed to ``new()'', a shallow copy of that object will be returned. A shallow copy means that you are returned a new object, but all of the objects underneath still refer to the original objects.

$object->root()

$object->rootpath()

root() returns the root node if $object is a Data::Grove::Tied object. ``rootpath()'' returns an array of all the nodes between and including the root node and ``$object''.

$tied = $object->add_magic([$parent])

add_magic() returns a `Data::Grove::Tied' object with ``$object'' as it's ``Raw'' object. If ``$parent'' is given, that becomes the tied object's parent object.

AUTHOR

 Ken MacLeod, ken@bitsko.slc.ut.us

SEE ALSO

perl(1)

Data::Grove::Visitor

Add visitor/callback methods to Data::Grove objects

SYNOPSIS

use Data::Grove::Visitor;

@results = $object->accept ($visitor, ...);

@results = $object->accept_name ($visitor, ...);

@results = $object->children_accept ($visitor, ...);

@results = $object->children_accept_name ($visitor, ...);

DESCRIPTION

Data::Grove::Visitor adds visitor methods (callbacks) to Data::Grove objects. A ``visitor'' is a class (a package) you write that has methods (subs) corresponding to the objects in the classes being visited. You use the visitor methods by creating an instance of your visitor class, and then calling ``accept($my_visitor)'' on the top-most object you want to visit, that object will in turn call your visitor back with ``visit_object'', where object is the type of object.

There are several forms of ``accept''. Simply calling ``accept'' calls your package back using the object type of the object you are visiting. Calling ``accept_name'' on an element object calls you back with ``visit_name_name'' where name is the name of the element, on all other objects it's as if you called ``accept''.

All of the forms of ``accept'' return a concatenated list of the result of all ``visit'' methods.

``children_accept'' calls ``accept'' on each of the children of the element. This is generally used in element callbacks to recurse down into the element's children, you don't need to get the element's contents and call ``accept'' on each item.

``children_accept_name'' does the same but calling ``accept_name'' on each of the children.

``attr_accept'' calls ``accept'' on each of the objects in the named attribute.

Refer to the documentation of the classes you are visiting (XML::Grove, etc.) for the type names (``element'', ``document'', etc.) of the objects it implements.

RESERVED NAMES

The hash keys ``Contents'' and ``Name'' are used to indicate objects with children (for ``children_accept'') and named objects (for ``accept_name'').

NOTES

These are random ideas that haven't been implemented yet:

Several objects fall into subclasses, or you may want to be able to subclass a visited object and still be able to tell the difference. In SGML::Grove I had used the package name in the callback (``visit_SGML_Element'') instead of a generic name (``visit_element''). The idea here would be to try calling ``visit_*PACKAGE'*' with the most specific class first, then try superclasses, and lastly to try the generic.

AUTHOR

Ken MacLeod, ken@bitsko.slc.ut.us
SEE ALSO

perl(1), Data::Grove

Extensible Markup Language (XML) <http://www.w3c.org/XML>
DBIx::XML_RDB

DBIx::XML_RDB is a Perl extension for creating XML from existing DBI datasources

NOTE

[See also the DBI modules, whose descriptions appear in the second half of this Chapter]

SYNOPSIS

use DBIx::XML_RDB;

my $xmlout = DBIx::XML_RDB->new(

 $datasource,

 "ODBC",

 $userid,

 $password,

 $dbname

) || die "Failed to make new xmlout";

$xmlout->DoSql("select * from MyTable");

print $xmlout->GetData;

DESCRIPTION

This module is a simple creator of XML data from DBI datasources. It allows you to easily extract data from a database, and manipulate later using XML::Parser.

One use of this module might be (and will be soon from me) to extract data on the web server, and send the raw data (in XML format) to a client's browser, and then use either XML::Parser from PerlScript, or MSXML from VBScript/JavaScript on the client's machine to generate HTML (obviously this relies upon using Microsoft Internet Explorer 5 or later for their Active Scripting Engine, and MSXML comes with IE5beta).

Another use is a simple database extraction tool, which is included, called sql2xml. This tool simply dumps a table in a database to an XML file. This can be used in conjunction with xml2sql (part of the XML::DBI(?) package) to transfer databases from one platform or database server to another.

Binary data is encoded using UTF-8. This is automatically decoded when parsing with XML::Parser.

Included with the distribution is a "Scriptlet" -- this is basically a Win32 OLE wrapper around this class, allowing you to call this module from any application that supports OLE. To install it, first install the scriptlets download from microsoft at http://msdn.microsoft.com/scripting. Then right-click on XMLDB.sct in explorer and select "Register". Create your object as an instance of "XMLDB.Scriptlet".

FUNCTIONS

new

new($datasource, $dbidriver, $userid, $password [, $dbname])

See the DBI documentation for what each of these means, except for $dbname which is for support of Sybase and MSSQL server database names (using "use $dbname").

DoSql

DoSql($sql)

Takes a simple Sql command string (either a select statement or on some DBMS's can be a stored procedure call that returns a result set - Sybase and MSSql support this, I don't know about others).

This doesn't do any checking if the sql is valid, if it fails, the procedure will "die", so if you care about that, wrap it in an eval{} block.

The result set will be appended to the output. Subsequent calls to DoSql don't overwrite the output, rather they append to it. This allows you to call DoSql multiple times before getting the output (via GetData()).

GetData

Simply returns the XML generated from this SQL call. Unfortunately it doesn't stream out as yet. I may add this in sometime in the future (this will probably mean an IO handle being passed to new()).

The format of the XML output is something like this:

<?xml version="1.0"?>

<DataSource>

 <RESULTSET statement="select * from Table">

 <ROW>

 <Col1Name>Data</Col1Name>

 <Col2Name>Data</Col2Name>

 ...

 </ROW>

 <ROW>

 ...

 </ROW>

 </RESULTSET>

 <RESULTSET statement="select * from OtherTable">

 ...

 </RESULTSET>

</DataSource>

This is quite easy to parse using XML::Parser.

AUTHOR

Matt Sergeant, msergeant@ndirect.co.uk (ISP) or sergeant@geocities.com (more permanent, but slower response times).

SEE ALSO

perl(1). XML::DBI.

Frontier::RPC2

Not Included

XML::DOM

A perl module for building DOM Level 1 compliant document structures

SYNOPSIS

use XML::DOM;

my $parser = new XML::DOM::Parser;

my $doc = $parser->parsefile("file.xml");

print all HREF attributes of all CODEBASE elements

my $nodes = $doc->getElementsByTagName("CODEBASE");

my $n = $nodes->getLength;

for (my $i = 0; $i < $n; $i++) {

 my $node = $nodes->item($i);

 my $href = $node->getAttribute("HREF");

 print $href->getValue . "\n";

}

$doc->printToFile ("out.xml");

print $doc->toString;

DESCRIPTION

This module extends the XML::Parser module by Clark Cooper. The XML::Parser module is built on top of XML::Parser::Expat, which is a lower level interface to James Clark's expat library.

XML::DOM::Parser is derived from XML::Parser. It parses XML strings or files and builds a data structure that conforms to the API of the Document Object Model as described at http://www.w3.org/TR/REC-DOM-Level-1. See the XML::Parser [documentation] for other available features of the XML::DOM::Parser class. Note that the 'Style' property should not be used (it is set internally.)

The XML::Parser NoExpand option is more or less supported, in that it will generate EntityReference objects whenever an entity reference is encountered in character data. I'm not sure how useful this is. Any comments are welcome.

As described in the synopsis, when you create an XML::DOM::Parser object, the parse and parsefile methods create an XML::DOM::Document object from the specified input. This Document object can then be examined, modified and written back out to a file or converted to a string.

When using XML::DOM with XML::Parser version 2.19 and up, setting the XML::DOM::Parser option KeepCDATA to 1 will store CDATASections in CDATASection nodes, instead of converting them to Text nodes. Subsequent CDATASection nodes will be merged into one. Let me know if this is a problem.

A Document has a tree structure consisting of Node objects. A Node may contain other nodes, depending on its type. A Document may have Element, Text, Comment, and CDATASection nodes. Element nodes may have Attr, Element, Text, Comment, and CDATASection nodes. The other nodes may not have any child nodes.

This module adds several node types that are not part of the DOM spec (yet.) These are: ElementDecl (for <!ELEMENT ...> declarations), AttlistDecl (for <!ATTLIST ...> declarations), XMLDecl (for <?xml ...?> declarations) and AttDef (for attribute definitions in an AttlistDecl.)

DOM API

[The following sections describe the various classes and subclasses introduced by the XML-DOM package]

XML::DOM

Constant definitions

The following predefined constants indicate which type of node it is.

UNKNOWN_NODE
(0) The node type is unknown (not part of DOM)

ELEMENT_NODE
(1) The node is an Element.

ATTRIBUTE_NODE
(2) The node is an Attr.

TEXT_NODE
(3) The node is a Text node.
CDATA_SECTION_NODE
(4) The node is a CDATASection.

ENTITY_REFERENCE_NODE
(5) The node is an EntityReference.

ENTITY_NODE
(6) The node is an Entity.

PROCESSING_INSTRUCTION_NODE
(7) The node is a ProcessingInstruction.

COMMENT_NODE
(8) The node is a Comment.

DOCUMENT_NODE
(9) The node is a Document.

DOCUMENT_TYPE_NODE
(10) The node is a DocumentType.

DOCUMENT_FRAGMENT_NODE
(11) The node is a DocumentFragment.

NOTATION_NODE
(12) The node is a Notation.

ELEMENT_DECL_NODE
(13) The node is an ElementDecl (not part of DOM)

ATT_DEF_NODE
(14) The node is an AttDef (not part of DOM)

XML_DECL_NODE
(15) The node is an XMLDecl (not part of DOM)

ATTLIST_DECL_NODE
(16) The node is an AttlistDecl (not part of DOM)

Usage:

if ($node->getNodeType == ELEMENT_NODE) {

 print "It's an Element";

}

Not In DOM Spec: The DOM Spec does not mention UNKNOWN_NODE and, quite frankly, you should never encounter it. The last four node types were added to support the four added node classes.

Global Variables

$VERSION

The variable $XML::DOM::VERSION contains the version number of this implementation, e.g. "1.07".

Additional methods not in the DOM Spec

getIgnoreReadOnly and ignoreReadOnly (readOnly)

The DOM Level 1 Spec does not allow you to edit certain sections of the document, e.g. the DocumentType, so by default this implementation throws DOMExceptions (i.e. NO_MODIFICATION_ALLOWED_ERR) when you try to edit a readonly node. These readonly checks can be disabled by (temporarily) setting the global IgnoreReadOnly flag.

The ignoreReadOnly method sets the global IgnoreReadOnly flag and returns its previous value. The getIgnoreReadOnly method simply returns its current value.

my $oldIgnore = XML::DOM::ignoreReadOnly (1);

eval {

 ... do whatever you want, catching any other exceptions ...

};

 XML::DOM::ignoreReadOnly ($oldIgnore); # restore previous value

isValidName(name)

Whether the specified name is a valid "Name" as specified in the XML spec. The default implementation currently only accepts names consisting of ASCII characters (i.e. Unicode character codes < 127.) Use XML::DOM::UTF8 with Perl 5.005_5x to allow characters > 127. See XML::DOM::UTF8 [below] for details.

getAllowReservedNames and allowReservedNames(boolean)
The first method returns whether reserved names are allowed. The second takes a boolean argument and sets whether reserved names are allowed. The initial value is 1 (i.e. allow reserved names.)

The XML spec states that "Names" starting with (X|x)(M|m)(L|l) are reserved for future use. (Amusingly enough, the XML version of the XML spec (REC-xml-19980210.xml) breaks that very rule by defining an ENTITY with the name 'xmlpio'.) A "Name" in this context means the Name token as found in the BNF rules in the XML spec.

XML::DOM only checks for errors when you modify the DOM tree, not when the DOM tree is built by the XML::DOM::Parser.

XML::DOM::Node

Global Variables

@NodeNames

The variable @XML::DOM::Node::NodeNames maps the node type constants to strings. It is used by XML::DOM::Node::getNodeTypeName.

Methods

getNodeType

Return an integer indicating the node type. See XML::DOM

constants.

getNodeName

Return a property or a hard-coded string, depending on the node type. Here are the corresponding functions or values:

[@@@Prod: this should be in a 2-column table really, but I don't know how to format that with the ites in code so it'll work for you -- it's OK like this too, though. -- Liam @@]

 Attr getName

 AttDef getName

 AttlistDeclgetName

 CDATASection "#cdata-section"

 Comment"#comment"

 Document "#document"

 DocumentType getNodeName

 DocumentFragment "#document-fragment"

 ElementgetTagName

 ElementDeclgetName

 EntityReferencegetEntityName

 Entity getNotationName

 Notation getName

 ProcessingInstruction getTarget

 Text "#text"

 XMLDecl"#xml-declaration"

Not In DOM Spec

AttDef, AttlistDecl, ElementDecl and XMLDecl were added for completeness.

getNodeValue and setNodeValue(value)
Returns a string or undef, depending on the node type. This method is provided for completeness. In other languages it saves the programmer an upcast. The value is either available thru some other method defined in the subclass, or else undef is returned. Here are the corresponding methods:

Attr::getValue, Text::getData,

CDATASection::getData, Comment::getData,

ProcessingInstruction::getData.

getParentNode and setParentNode(parentNode)
The parent of this node. All nodes, except Document, DocumentFragment, and Attr may have a parent. However, if a node has just been created and not yet added to the tree, or if it has been removed from the tree, this is undef.

getChildNodes

A NodeList that contains all children of this node. If there are no children, this is a NodeList containing no nodes. The content of the returned NodeList is "live" in the sense that, for instance, changes to the children of the node object that it was created from are immediately reflected in the nodes returned by the NodeList accessors; it is not a static snapshot of the content of the node. This is true for every NodeList, including the ones returned by the getElementsByTagName method.

NOTE

This implementation does not return a "live" NodeList for getElementsByTagName. See the CAVEATS manpage.

When this method is called in a list context, it returns a regular perl list containing the child nodes. Note that this list is not "live". E.g.

@list = $node->getChildNodes;# returns a perl list

$nodelist = $node->getChildNodes;# returns a NodeList (object reference)

for my $kid ($node->getChildNodes) {

 # iterate over the children of $node

}

getFirstChild

The first child of this node. If there is no such node, this returns undef.

getLastChild

The last child of this node. If there is no such node, this returns undef.

getPreviousSibling

The node immediately preceding this node. If there is no such node, this returns undef.

getNextSibling

The node immediately following this node. If there is no such node, this returns undef.

getAttributes

A NamedNodeMap containing the attributes (Attr nodes) of this node (if it is an Element) or undef otherwise. Note that adding/removing attributes from the returned object, also adds/removes attributes from the Element node that the NamedNodeMap came from.

getOwnerDocument

The Document object associated with this node. This is also the Document object used to create new nodes. When this node is a Document this is undef.

insertBefore (newChild, refChild)

Inserts the node newChild before the existing child node refChild. If refChild is undef, insert newChild at the end of the list of children.

If newChild is a DocumentFragment object, all of its children are inserted, in the same order, before

refChild. If the newChild is already in the tree, it is first removed.

Return Value: The node being inserted.

DOMExceptions:

HIERARCHY_REQUEST_ERR
Raised if this node is of a type that does not allow children of the type of the newChild node, or if the node to insert is one of this node's ancestors.

WRONG_DOCUMENT_ERR
Raised if newChild was created from a different document than the one that created this node.

NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly.

NOT_FOUND_ERR
Raised if refChild is not a child of this node.

replaceChild (newChild, oldChild)

Replaces the child node oldChild with newChild in the list of children, and returns the oldChild node. If the newChild is already in the tree, it is first removed.

Return Value: The node replaced.

DOMExceptions:

HIERARCHY_REQUEST_ERR
Raised if this node is of a type that does not allow children of the type of the newChild node, or it the node to put in is one of this node's ancestors.
WRONG_DOCUMENT_ERR
Raised if newChild was created from a different document than the one that created this node.

NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly.

NOT_FOUND_ERR
Raised if oldChild is not a child of this node.

removeChild(oldChild)

Removes the child node indicated by oldChild from the list of children, and returns it.

Return Value: The node removed.

DOMExceptions:

HIERARCHY_REQUEST_ERR
Raised if this node is of a type that does not allow children of the type of the newChild node, or it the node to put in is one of this node's ancestors.

WRONG_DOCUMENT_ERR
Raised if newChild was created from a different document than the one that created this node.

NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly.

NOT_FOUND_ERR
Raised if oldChild is not a child of this node.

appendChild (newChild)

Adds the node newChild to the end of the list of children of this node. If the newChild is already in the tree, it is first removed. If it is a DocumentFragment object, the entire contents of the document fragment are moved into the child list of this node.

Return Value: The node added.

DOMExceptions:
HIERARCHY_REQUEST_ERR
Raised if this node is of a type that does not allow children of the type of the newChild node, or if the node to append is one of this node's ancestors.
WRONG_DOCUMENT_ERR
Raised if newChild was created from a different document than the one that created this node.
NO_MODIFICATION_ALLOWED_ERR
Raised if this node is read-only.

hasChildNodes

This is a convenience method to allow easy determination of whether a node has any children.

Return Value: 1 if the node has any children, 0 otherwise.

cloneNode (deep)

Returns a duplicate of this node, i.e., serves as a generic copy constructor for nodes. The duplicate node has no parent (parentNode returns undef.).

Cloning an Element copies all attributes and their values, including those generated by the XML processor to represent defaulted attributes, but this method does not copy any text it contains unless it is a deep clone, since the text is contained in a child Text node. Cloning any other type of node simply returns a copy of this node.

Parameters: deep If true, recursively clone the subtree under the specified node. If false, clone only the node itself (and its attributes, if it is an Element).

Return Value: The duplicate node.

normalize

Puts all Text nodes in the full depth of the sub-tree underneath this Element into a "normal" form where only markup (e.g., tags, comments, processing instructions, CDATA sections, and entity references) separates Text nodes, i.e., there are no adjacent Text nodes. This can be used to ensure that the DOM view of a document is the same as if it were saved and re-loaded, and is useful when operations (such as XPointer lookups) that depend on a particular document tree structure are to be used.

Not In DOM Spec: In the DOM Spec this method is defined in the Element and Document class interfaces only, but it doesn't hurt to have it here...

getElementsByTagName

Returns a NodeList of all descendant elements with a given tag name, in the order in which they would be encountered in a preorder traversal of the Element tree.

Parameters: name The name of the tag to match on. The special value "*" matches all tags.

Return Value: A list of matching Element nodes.

NOTE

This implementation does not return a "live" NodeList for getElementsByTagName. See the CAVEATS manpage.

When this method is called in a list context, it returns a regular perl list containing the result nodes. E.g.

@list = $node->getElementsByTagName; # returns a perl list

$nodelist = $node->getElementsByTagName;

 # returns a NodeList (object ref.)

for my $elem ($node->getElementsByTagName) {

 # iterate over the result nodes

}

Additional methods not in the DOM Spec

getNodeTypeName

Return the string describing the node type. E.g. returns "ELEMENT_NODE" if getNodeType returns ELEMENT_NODE. It uses @XML::DOM::Node::NodeNames.

toString

Returns the entire subtree as a string.

printToFile(filename)

Prints the entire subtree to the file with the specified filename.

Croaks: if the file could not be opened for writing.

printToFileHandle(handle)

Prints the entire subtree to the file handle. E.g. to print to STDOUT:

$node->printToFileHandle (*STDOUT);

print(obj)

Prints the entire subtree using the object's print method. E.g to print to a FileHandle object:

$f = new FileHandle ("file.out", "w");

$node->print ($f);

getChildIndex(child)

Returns the index of the child node in the list returned by getChildNodes.

Return Value: the index or -1 if the node is not found.

getChildAtIndex(index)

Returns the child node at the specified index or undef.

addText(text)

Appends the specified string to the last child if it is a Text node, or else appends a new Text node (with the specified text.)

Return Value: the last child if it was a Text node or else the new Text node.

dispose

Removes all circular references in this node and its descendants so the objects can be claimed for garbage collection. The objects should not be used afterwards.

setOwnerDocument(doc)

Sets the ownerDocument property of this node and all its children (and attributes etc.) to the specified document. This allows the user to cut and paste document subtrees between different XML::DOM::Documents. The node should be removed from the original document first, before calling setOwnerDocument.

This method does nothing when called on a Document node.

isAncestor(parent)

Returns 1 if parent is an ancestor of this node or if it is this node itself.

expandEntityRefs(str)

Expands all the entity references in the string and returns the result. The entity references can be character references (e.g. "{" or "ῂ"), default entity references (""", ">", "<", "'" and "&") or entity references defined in Entity objects as part of the DocumentType of the owning Document. Character references are expanded into UTF-8.

Parameter entity references (e.g. %ent;) are not expanded.

Interface XML::DOM::NodeList

The NodeList interface provides the abstraction of an ordered collection of nodes, without defining or constraining how this collection is implemented.

The items in the NodeList are accessible via an integral index, starting from 0.

Although the DOM spec states that all NodeLists are "live" in that they always reflect changes to the DOM tree, the NodeList returned by getElementsByTagName is not live in this implementation. See the CAVEATS manpage for details.

item(index)

Returns the indexth item in the collection. If index is greater than or equal to the number of nodes in the list, this returns undef.

getLength

The number of nodes in the list. The range of valid child node indices is 0 to length-1 inclusive.

Additional methods not in the DOM Spec

dispose

Removes all circular references in this NodeList and its descendants so the objects can be claimed for garbage collection. The objects should not be used afterwards.

Interface XML::DOM::NamedNodeMap

Objects implementing the NamedNodeMap interface are used to represent collections of nodes that can be accessed by name. Note that NamedNodeMap does not inherit from NodeList; NamedNodeMaps are not maintained in any particular order.

Objects contained in an object implementing NamedNodeMap may also be accessed by an ordinal index, but this is simply to allow convenient enumeration of the contents of a NamedNodeMap, and does not imply that the DOM specifies an order to these Nodes.

NOTE

In this implementation, the objects added to a NamedNodeMap are kept in order.

getNamedItem(name)

Retrieves a node specified by name.

Return Value: A Node (of any type) with the specified name, or undef if the specified name did not identify any node in the map.

setNamedItem(arg)

Adds a node using its nodeName attribute.

As the nodeName attribute is used to derive the name which the node must be stored under, multiple nodes of certain types (those that have a "special" string value) cannot be stored as the names would clash. This is seen as preferable to allowing nodes to be aliased.

Parameters: arg: A node to store in a named node map.

The node will later be accessible using the value of the nodeName attribute of the node. If a node with that name is already present in the map, it is replaced by the new one.

Return Value: If the new Node replaces an existing node with the same name the previously existing Node is returned, otherwise undef is returned.

DOMExceptions:

WRONG_DOCUMENT_ERR
Raised if arg was created from a different document than the one that created the NamedNodeMap.
NO_MODIFICATION_ALLOWED_ERR
Raised if this NamedNodeMap is readonly.

INUSE_ATTRIBUTE_ERR
Raised if arg is an Attr that is already an attribute of another Element object. The DOM user must explicitly clone Attr nodes to re-use them in other elements.

removeNamedItem(name)

Removes a node specified by name. If the removed node is an Attr with a default value it is immediately replaced.

Return Value: The node removed from the map or undef if no node with such a name exists.

DOMException:

NOT_FOUND_ERR
Raised if there is no node named name in the map.
item(index)

Returns the indexth item in the map. If index is greater than or equal to the number of nodes in the map, this returns undef.

Return Value: The node at the indexth position in the NamedNodeMap, or undef if that is not a valid index.

getLength

Returns the number of nodes in the map. The range of valid child node indices is 0 to length-1 inclusive.

Additional methods not in the DOM Spec

getValues

Returns a NodeList with the nodes contained in the NamedNodeMap. The NodeList is "live", in that it reflects changes made to the NamedNodeMap.

When this method is called in a list context, it returns a regular perl list containing the values. Note that

this list is not "live". E.g.

@list = $map->getValues;# returns a perl list

$nodelist = $map->getValues;# returns a NodeList (object ref.)

for my $val ($map->getValues) {

 # iterate over the values

}

getChildIndex(node)

Returns the index of the node in the NodeList as returned by getValues, or -1 if the node is not in the NamedNodeMap.

dispose

Removes all circular references in this NamedNodeMap and its descendants so the objects can be claimed for garbage collection. The objects should not be used afterwards.

Interface XML::DOM::CharacterData extends XML::DOM::Node

The CharacterData interface extends Node with a set of attributes and methods for accessing character data in the DOM. For clarity this set is defined here rather than on each object that uses these attributes and methods. No DOM objects correspond directly to CharacterData, though Text, Comment and CDATASection do inherit the interface from it.

All offsets in this interface start from 0.

getData and setData(data)

The character data of the node that implements this interface. The DOM implementation may not put arbitrary limits on the amount of data that may be stored in a CharacterData node. However, implementation limits may mean that the entirety of a node's data may not fit into a single DOMString. In such cases, the user may call substringData to retrieve the data in appropriately sized pieces.

getLength

The number of characters that are available through data and the substringData method below. This may have the value zero, i.e., CharacterData nodes may be empty.

substringData(offset, count)

Extracts a range of data from the node.

Parameters: offset Start offset of substring to extract; count The number of characters to extract.

Return Value: The specified substring. If the sum of offset and count exceeds the length, then all characters to the end of the data are returned.

appendData(str)

Appends the string to the end of the character data of the node. Upon success, data provides access to the concatenation of data and the DOMString specified.

insertData(offset, arg)

Inserts a string at the specified character offset.

Parameters: offset The character offset at which to insert; arg The DOMString to insert.

deleteData(offset, count)

Removes a range of characters from the node. Upon success, data and length reflect the change. If the sum of offset and count exceeds length then all characters from offset to the end of the data are deleted.

Parameters: offset The offset from which to remove characters. count The number of characters to delete.

replaceData(offset, count, arg)

Replaces the characters starting at the specified character offset with the specified string.

Parameters: offset The offset from which to start replacing. count The number of characters to replace. arg The DOMString with which the range must be replaced.

If the sum of offset and count exceeds length, then all characters to the end of the data are replaced (i.e., the effect is the same as a remove method call with the same range, followed by an append method invocation).

XML::DOM::Attr extends XML::DOM::Node

The Attr nodes built by the XML::DOM::Parser always have one child node which is a Text node containing the expanded string value (i.e. EntityReferences are always expanded.) EntityReferences may be added when modifying or creating a new Document.

The Attr interface represents an attribute in an Element object. Typically the allowable values for the attribute are defined in a document type definition.

Attr objects inherit the Node interface, but since they are not actually child nodes of the element they describe, the DOM does not consider them part of the document tree. Thus, the Node attributes parentNode, previousSibling, and nextSibling have a undef value for Attr objects. The DOM takes the view that attributes are properties of elements rather than having a separate identity from the elements they are associated with; this should make it more efficient to implement such features as default attributes associated with all elements of a given type. Furthermore, Attr nodes may not be immediate children of a DocumentFragment. However, they can be associated with Element nodes contained within a DocumentFragment. In short, users and implementors of the DOM need to be aware that Attr nodes have some things in common with other objects inheriting the Node interface, but they also are quite distinct.

The attribute's effective value is determined as follows: if this attribute has been explicitly assigned any value, that value is the attribute's effective value; otherwise, if there is a declaration for this attribute, and that declaration includes a default value, then that default value is the attribute's effective value; otherwise, the attribute does not exist on this element in the structure model until it has been explicitly added. Note that the nodeValue attribute on the Attr instance can also be used to retrieve the string version of the attribute's value(s).

In XML, where the value of an attribute can contain entity references, the child nodes of the Attr node provide a representation in which entity references are not expanded. These child nodes may be either Text or EntityReference nodes. Because the attribute type may be unknown, there are no tokenized attribute values.

getValue

On retrieval, the value of the attribute is returned as a string. Character and general entity references are replaced with their values.

setValue(str)

DOM Spec: On setting, this creates a Text node with the unparsed contents of the string.

getName

Returns the name of this attribute.

XML::DOM::Element extends XML::DOM::Node

By far the vast majority of objects (apart from text) that authors encounter when traversing a document are Element nodes. Assume the following XML document:

<elementExample id="demo">

 <subelement1/>

 <subelement2><subsubelement/></subelement2>

</elementExample>

When represented using DOM, the top node is an Element node for "elementExample", which contains two child Element nodes, one for "subelement1" and one for "subelement2". "subelement1" contains no child nodes.

Elements may have attributes associated with them; since the Element interface inherits from Node, the generic Node interface method getAttributes may be used to retrieve the set of all attributes for an element. There are methods on the Element interface to retrieve either an Attr object by name or an attribute value by name. In XML, where an attribute value may contain entity references, an Attr object should be retrieved to examine the possibly fairly complex sub-tree representing the attribute value. On the other hand, in HTML, where all attributes have simple string values, methods to directly access an attribute value can safely be used as a convenience.

getTagName

The name of the element. For example, in:

 <elementExample id="demo">

 ...

 </elementExample>

tagName has the value "elementExample". Note that this is case-preserving in XML, as are all of the operations of the DOM.

getAttribute (name)

Retrieves an attribute value by name.

Return Value: The Attr value as a string, or the empty string if that attribute does not have a specified or default value.

setAttribute (name, value)

Adds a new attribute. If an attribute with that name is already present in the element, its value is changed to be that of the value parameter. This value is a simple string, it is not parsed as it is being set. So any markup (such as syntax to be recognized as an entity reference) is treated as literal text, and needs to be appropriately escaped by the implementation when it is written out. In order to assign an attribute value that contains entity references, the user must create an Attr node plus any Text and EntityReference nodes, build the appropriate subtree, and use setAttributeNode to assign it as the value of an attribute.

DOMExceptions:

INVALID_CHARACTER_ERR
Raised if the specified name contains an invalid character.

NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly.

removeAttribute (name)

Removes an attribute by name. If the removed attribute has a default value it is immediately replaced.

DOMExceptions:

NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly.

getAttributeNode

Retrieves an Attr node by name.

Return Value: The Attr node with the specified attribute name or undef if there is no such attribute.

setAttributeNode(attr)

Adds a new attribute. If an attribute with that name is already present in the element, it is replaced by the new one.

Return Value: If the newAttr attribute replaces an existing attribute with the same name, the previously existing Attr node is returned, otherwise undef is returned.

DOMExceptions:

WRONG_DOCUMENT_ERR
Raised if newAttr was created from a different document than the one that created the element.

NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly.

INUSE_ATTRIBUTE_ERR
Raised if newAttr is already an attribute of another Element object. The DOM user must explicitly clone Attr nodes to re-use them in other elements.

removeAttributeNode(oldAttr)

Removes the specified attribute. If the removed Attr has a default value it is immediately replaced. If the Attr already is the default value, nothing happens and nothing is returned.

Parameters: oldAttr The Attr node to remove from the attribute list.

Return Value: The Attr node that was removed.

DOMExceptions:

NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly.

NOT_FOUND_ERR
Raised if oldAttr is not an attribute of the element.
Additional methods not in the DOM Spec

setTagName(newTagName)

Sets the tag name of the Element. Note that this method is not portable between DOM implementations.

DOMExceptions:

INVALID_CHARACTER_ERR
Raised if the specified name contains an invalid character.

XML::DOM::Text extends XML::DOM::CharacterData

The Text interface represents the textual content (termed character data in XML) of an Element or Attr. If there is no markup inside an element's content, the text is contained in a single object implementing the Text interface that is the only child of the element. If there is markup, it is parsed into a list of elements and Text nodes that form the list of children of the element.

When a document is first made available via the DOM, there is only one Text node for each block of text. Users may create adjacent Text nodes that represent the contents of a given element without any intervening markup, but should be aware that there is no way to represent the separations between these nodes in XML or HTML, so they will not (in general) persist between DOM editing sessions. The normalize() method on Element merges any such adjacent Text objects into a single node for each block of text; this is recommended before employing operations that depend on a particular document structure, such as navigation with XPointers.

Not Implemented:

The XML::DOM::Parser converts all CDATASections to regular text, so as far as I know, there is know way to preserve them. If you add CDATASection nodes to a Document yourself, they will be preserved.

splitText(offset)

Breaks this Text node into two Text nodes at the specified offset, keeping both in the tree as siblings. This node then only contains all the content up to the offset point. And a new Text node, which is inserted as the next sibling of this node, contains all the content at and after the offset point.

Parameters: offset The offset at which to split, starting from zero.

Return Value: The new Text node.

DOMExceptions:
INDEX_SIZE_ERR
Raised if the specified offset is negative or greater than the number of characters in data.

NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly.

XML::DOM::Comment extends XML::DOM::CharacterData

This represents the content of a comment, i.e., all the characters between the starting '<!--' and ending '-->'.

NOTE

This is the definition of a comment in XML, and, in practice, HTML, although some HTML tools may implement the full SGML comment structure.

XML::DOM::CDATASection extends XML::DOM::CharacterData

CDATA sections are used to escape blocks of text containing characters that would otherwise be regarded as markup. The only delimiter that is recognized in a CDATA section is the "]]>" string that ends the CDATA section. CDATA sections cannot be nested. The primary purpose is for including material such as XML fragments, without needing to escape all the delimiters.

The DOMString attribute of the Text node holds the text that is contained by the CDATA section. Note that this may contain characters that need to be escaped outside of CDATA sections and that, depending on the character encoding ("charset") chosen for serialization, it may be impossible to write out some characters as part of a CDATA section.

The CDATASection interface inherits the CharacterData interface through the Text interface. Adjacent CDATASections nodes are not merged by use of the Element.normalize() method.

Not Implemented

See Text node comments about CDATASections being converted to Text nodes when parsing XML input.

XML::DOM::ProcessingInstruction extends XML::DOM::Node

The ProcessingInstruction interface represents a "processing instruction", used in XML as a way to keep processor-specific information in the text of the document. An example:

<?PI processing instruction?>

Here, "PI" is the target and "processing instruction" is the data.

getTarget

The target of this processing instruction. XML defines this as being the first token following the markup that begins the processing instruction.

getData and setData (data)

The content of this processing instruction. This is from the first non white space character after the target to the character immediately preceding the ?>.

XML::DOM::Notation extends XML::DOM::Node

This node represents a Notation, e.g.

<!NOTATION gs SYSTEM "GhostScript">

<!NOTATION name PUBLIC "pubId">

<!NOTATION name PUBLIC "pubId" "sysId">

<!NOTATION name SYSTEM "sysId">

getName and setName(name)

Returns (or sets) the Notation name, which is the first token after the NOTATION keyword.

getSysId and setSysId(sysId)

Returns (or sets) the system ID, which is the token after the optional SYSTEM keyword.

getPubId and setPubId(pubId)

Returns (or sets) the public ID, which is the token after the optional PUBLIC keyword.

getBase

This is passed by XML::Parser in the Notation handler. I don't know what it is yet.

getNodeName

Returns the same as getName.

XML::DOM::Entity extends XML::DOM::Node

This node represents an Entity declaration, e.g.

<!ENTITY % draft 'INCLUDE'>

<!ENTITY hatch-pic SYSTEM "../grafix/OpenHatch.gif" NDATA gif>

The first one is called a parameter entity and is referenced like this: %draft; The 2nd is a (regular) entity and is referenced like this: &hatch-pic;
getNotationName

Returns the name of the notation for the entity.

Not Implemented: The DOM Spec says: For unparsed entities, the name of the notation for the entity. For parsed entities, this is null. (This implementation does not support unparsed entities.)

getSysId

Returns the system id, or undef.

getPubId

Returns the public id, or undef.

Additional methods not in the DOM Spec

isParameterEntity

Whether it is a parameter entity (%ent;) or not (&ent;)

getValue

Returns the entity value.

getNdata

Returns the NDATA declaration (for general unparsed entities), or undef.

XML::DOM::DocumentType extends XML::DOM::Node

Each Document has a doctype attribute whose value is either null or a DocumentType object. The DocumentType interface in the DOM Level 1 Core provides an interface to the list of entities that are defined for the document, and little else because the effect of namespaces and the various XML scheme efforts on DTD representation are not clearly understood as of this writing. The DOM Level 1 doesn't support editing DocumentType nodes.

Not In DOM Spec: This implementation has added a lot of extra functionality to the DOM Level 1 interface. To allow editing of the DocumentType nodes, see XML::DOM::ignoreReadOnly.

getName

Returns the name of the DTD, i.e. the name immediately following the DOCTYPE keyword.

getEntities

A NamedNodeMap containing the general entities, both external and internal, declared in the DTD. Duplicates are discarded. For example in:

<!DOCTYPE ex SYSTEM "ex.dtd" [

 <!ENTITY foo "foo">

 <!ENTITY bar "bar">

 <!ENTITY % baz "baz">

]>

<ex/>

the interface provides access to foo and bar but not baz. Every node in this map also implements the Entity interface.

The DOM Level 1 does not support editing entities, therefore entities cannot be altered in any way.

Not In DOM Spec: See XML::DOM::ignoreReadOnly to edit the DocumentType etc.

getNotations

A NamedNodeMap containing the notations declared in the DTD. Duplicates are discarded. Every node in this map also implements the Notation interface.

The DOM Level 1 does not support editing notations, therefore notations cannot be altered in any way.

Not In DOM Spec: See XML::DOM::ignoreReadOnly to edit the DocumentType etc.

Additional methods not in the DOM Spec

Creating and setting the DocumentType

A new DocumentType can be created with:

$doctype = $doc->createDocumentType ($name, $sysId, $pubId);

To set (or replace) the DocumentType for a particular document, use:

$doc->setDocType ($doctype);

getSysId and setSysId(sysId)

Returns or sets the system id.

getPubId and setPubId(pudId)

Returns or sets the public id.

setName(name)

Sets the name of the DTD, i.e. the name immediately following the DOCTYPE keyword. Note that this should always be the same as the element tag name of the root element.

getAttlistDecl(elemName)

Returns the AttlistDecl for the Element with the specified name, or undef.

getElementDecl(elemName)

Returns the ElementDecl for the Element with the specified name, or undef.

getEntity(entityName)

Returns the Entity with the specified name, or undef.

addAttlistDecl (elemName)

Adds a new AttDecl node with the specified elemName if one doesn't exist yet. Returns the AttlistDecl (new or existing) node.

addElementDecl (elemName, model)

Adds a new ElementDecl node with the specified elemName and model if one doesn't exist yet. Returns the AttlistDecl (new or existing) node. The model is ignored if one already existed.

addEntity (parameter, notationName, value, sysId, pubId, ndata)

Adds a new Entity node. Don't use createEntity and appendChild, because it should be added to the internal NamedNodeMap containing the entities.

Parameters: parameter whether it is a parameter entity (%ent;) or not (&ent;). notationName the entity name. value the entity value. sysId the system id (if any.) pubId the public id (if any.) ndata the NDATA declaration (if any, for general unparsed entities.)

SysId, pubId and ndata may be undefined.

DOMExceptions:

INVALID_CHARACTER_ERR
Raised if the notationName does not conform to the XML spec.

addNotation(name, base, sysId, pubId)

Adds a new Notation object.

Parameters: name the notation name. base the base to be used for resolving a relative URI. sysId the system id. pubId the public id.

Base, sysId, and pubId may all be undefined. (These parameters are passed by the XML::Parser Notation

handler.)

DOMExceptions:

INVALID_CHARACTER_ERR
Raised if the notationName does not conform to the XML spec.

addAttDef(elemName, attrName, type, default, fixed)

Adds a new attribute definition. It will add the AttDef node to the AttlistDecl if it exists. If an AttDef with the specified attrName already exists for the given elemName, this function only generates a warning.

See XML::DOM::AttDef::new for the other parameters.

getDefaultAttrValue (elem, attr)

Returns the default attribute value as a string or undef, if none is available.

Parameters: elem The element tagName. attr The attribute name.

expandEntity (entity [, parameter])

Expands the specified entity or parameter entity (if parameter=1) and returns its value as a string, or undef if the entity does not exist. (The entity name should not contain the '%', '&' or ';' delimiters.)

XML::DOM::DocumentFragment extends XML::DOM::Node

DocumentFragment is a "lightweight" or "minimal" Document object. It is very common to want to be able to extract a portion of a document's tree or to create a new fragment of a document. Imagine implementing a user command like cut or rearranging a document by moving fragments around. It is desirable to have an object which can hold such fragments and it is quite natural to use a Node for this purpose. While it is true that a Document object could fulfil this role, a Document object can potentially be a heavyweight object, depending on the underlying implementation. What is really needed for this is a very lightweight object.

DocumentFragment is such an object.

Furthermore, various operations -- such as inserting nodes as children of another Node -- may take DocumentFragment objects as arguments; this results in all the child nodes of the DocumentFragment being moved to the child list of this node.

The children of a DocumentFragment node are zero or more nodes representing the tops of any sub-trees defining the structure of the document. DocumentFragment nodes do not need to be well-formed XML documents (although they do need to follow the rules imposed upon well-formed XML parsed entities, which can have multiple top nodes). For example, a DocumentFragment might have only one child and that child node could be a Text node. Such a structure model represents neither an HTML document nor a well-formed XML document.

When a DocumentFragment is inserted into a Document (or indeed any other Node that may take children) the children of the DocumentFragment and not the DocumentFragment itself are inserted into the Node. This makes the DocumentFragment very useful when the user wishes to create nodes that are siblings; the DocumentFragment acts as the parent of these nodes so that the user can use the standard methods from the Node interface, such as insertBefore() and appendChild().

XML::DOM::DOMImplementation

The DOMImplementation interface provides a number of methods for performing operations that are independent of any particular instance of the document object model.

The DOM Level 1 does not specify a way of creating a document instance, and hence document creation is an operation specific to an implementation. Future Levels of the DOM specification are expected to provide methods for creating documents directly.

hasFeature(feature, version)

Returns 1 if and only if feature equals "XML" and version equals "1.0".

XML::DOM::Document extends XML::DOM::Node

This is the main root of the document structure as returned by XML::DOM::Parser::parse and XML::DOM::Parser::parsefile.

Since elements, text nodes, comments, processing instructions, etc. cannot exist outside the context of a Document, the Document interface also contains the factory methods needed to create these objects. The Node objects created have a getOwnerDocument method which associates them with the Document within whose context they were created.

getDocumentElement

This is a convenience method that allows direct access to the child node that is the root Element of the document.

getDoctype

The Document Type Declaration (see DocumentType) associated with this document. For HTML documents as well as XML documents without a document type declaration this returns undef. The DOM Level 1 does not support editing the Document Type Declaration.

Not In DOM Spec: This implementation allows editing the doctype. See XML::DOM::ignoreReadOnly for details.

getImplementation

The DOMImplementation object that handles this document. A DOM application may use objects from multiple implementations.

createElement(tagName)

Creates an element of the type specified. Note that the instance returned implements the Element interface, so attributes can be specified directly on the returned object.

DOMExceptions:

INVALID_CHARACTER_ERR
Raised if the tagName does not conform to the XML spec.

createTextNode(data)

Creates a Text node given the specified string.

createComment(data)

Creates a Comment node given the specified string.

createCDATASection(data)

Creates a CDATASection node given the specified string.

createAttribute(name [, value [, specified]])

Creates an Attr of the given name. Note that the Attr instance can then be set on an Element using the setAttribute method.

Not In DOM Spec: The DOM Spec does not allow passing the value or the specified property in this method. In this implementation they are optional.

Parameters: value The attribute's value. See Attr::setValue for details. If the value is not supplied, the specified property is set to 0. specified Whether the attribute value was specified or whether the default value was used. If not supplied, it's assumed to be 1.

DOMExceptions:

INVALID_CHARACTER_ERR
Raised if the name does not conform to the XML spec.

createProcessingInstruction(target, data)

Creates a ProcessingInstruction node given the specified name and data strings.

Parameters: target The target part of the processing instruction. data The data for the node.

DOMExceptions:

INVALID_CHARACTER_ERR
Raised if the target does not conform to the XMLspec.

createDocumentFragment

Creates an empty DocumentFragment object.

createEntityReference (name)

Creates an EntityReference object.

Additional methods not in the DOM Spec

getXMLDecl and setXMLDecl(xmlDecl)

Returns the XMLDecl for this Document or undef if none was specified. Note that XMLDecl is not part of the list of child nodes.

setDoctype(doctype)

Sets or replaces the DocumentType. NOTE: Don't use appendChild or insertBefore to set the DocumentType. Even though doctype will be part of the list of child nodes, it is handled specially.

getDefaultAttrValue(elem, attr)

Returns the default attribute value as a string or undef, if none is available.

Parameters: elem The element tagName. attr The attribute name.

getEntity(name)

Returns the Entity with the specified name.

createXMLDecl(version, encoding, standalone)

Creates an XMLDecl object. All parameters may be undefined.

createDocumentType(name, sysId, pubId)

Creates a DocumentType object. SysId and pubId may be undefined.

createNotation(name, base, sysId, pubId)

Creates a new Notation object. Consider using XML::DOM::DocumentType::addNotation!

createEntity(parameter, notationName, value, sysId, pubId, ndata)

Creates an Entity object. Consider using XML::DOM::DocumentType::addEntity!

createElementDecl(name, model)

Creates an ElementDecl object.

DOMExceptions:

INVALID_CHARACTER_ERR
Raised if the element name (tagName) does not conform to the XML spec.

createAttlistDecl (name)

Creates an AttlistDecl object.

DOMExceptions:

INVALID_CHARACTER_ERR
Raised if the element name (tagName) does not conform to the XML spec.

expandEntity(entity [, parameter])

Expands the specified entity or parameter entity (if parameter=1) and returns its value as a string, or undef if the entity does not exist. (The entity name should not contain the '%', '&' or ';' delimiters.)

EXTRA NODE TYPES

XML::DOM::XMLDecl extends XML::DOM::Node

This node contains the XML declaration, e.g.

<?xml version="1.0" encoding="UTF-16" standalone="yes"?>

See also XML::DOM::Document::getXMLDecl.

getVersion and setVersion(version)

Returns and sets the XML version. At the time of this writing the version should always be "1.0"

getEncoding and setEncoding(encoding)

undef may be specified for the encoding value.

getStandalone and setStandalone(standalone)

undef may be specified for the standalone value.

XML::DOM::ElementDecl extends XML::DOM::Node

This node represents an Element declaration, e.g.

<!ELEMENT address (street+, city, state, zip, country?)>

getName

Returns the Element tagName.

getModel and setModel (model)

Returns and sets the model as a string, e.g. "(street+, city, state, zip, country?)" in the above example.

XML::DOM::AttlistDecl extends XML::DOM::Node

This node represents an ATTLIST declaration, e.g.

<!ATTLIST person

 sex (male|female) #REQUIRED

 hair CDATA "bold"

 eyes (none|one|two) "two"

 species (human)#FIXED "human"

>

Each attribute definition is stored a separate AttDef node. The AttDef nodes can be retrieved with getAttDef and added with addAttDef. (The AttDef nodes are stored in a NamedNodeMap internally.)

getName

Returns the Element tagName.

getAttDef(attrName)

Returns the AttDef node for the attribute with the specified name.

addAttDef(attrName, type, default, [fixed])

Adds a AttDef node for the attribute with the specified name.

Parameters: attrName the attribute name; type the attribute type (e.g. "CDATA" or "(male|female)"); default the default value enclosed in quotes (!), the string #IMPLIED or the string #REQUIRED; fixed whether the attribute is '#FIXED' (default is 0.)

XML::DOM::AttDef extends XML::DOM::Node

Each object of this class represents one attribute definition in an AttlistDecl.

getName

Returns the attribute name.

getDefault

Returns the default value, or undef.

isFixed

Whether the attribute value is fixed (see #FIXED keyword.)

isRequired

Whether the attribute value is required (see #REQUIRED keyword.)

isImplied

Whether the attribute value is implied (see #IMPLIED keyword.)

IMPLEMENTATION DETAILS

Perl Mappings

The value undef was used when the DOM Spec said null.

The DOM Spec says: Applications must encode DOMString using UTF-16 (defined in Appendix C.3 of [UNICODE] and Amendment 1 of [ISO-10646]). In this implementation we use plain old Perl strings encoded in UTF-8 instead of UTF-16.

Text and CDATASection nodes

The Expat parser expands EntityReferences and CDataSection sections to raw strings and does not indicate where it was found. This implementation does therefore convert both to Text nodes at parse time.

CDATASection and EntityReference nodes that are added to an existing Document (by the user) will be preserved.

Also, subsequent Text nodes are always merged at parse time. Text nodes that are added later can be merged with the normalize method. Consider using the addText method when adding Text nodes.

Printing and toString

When printing (and converting an XML Document to a string) the strings have to encoded differently depending on where they occur. E.g. in a CDATASection all substrings are allowed except for "]]>". In regular text, certain characters are not allowed, e.g. ">" has to be converted to ">". These routines should be verified by someone who knows the details.

UTF-8

When Perl supports UTF-8 in regular expressions, we should update the XML::DOM::isValidName method to allow non-ASCII characters.

Quotes

Certain sections in XML are quoted, like attribute values in an Element. XML::Parser strips these quotes and the print methods in this implementation always uses double quotes, so when parsing and printing a document, single quotes may be converted to double quotes. The default value of an attribute definition (AttDef) in an AttlistDecl, however, will maintain its quotes.

AttlistDecl

Attribute declarations for a certain Element are always merged into a single AttlistDecl object.

Comments

Comments in the DOCTYPE section are not kept in the right place. They will become child nodes of the Document.

SEE ALSO

The XML::DOM::UTF8 manual page. [reproduced in this book, see below]

The DOM Level 1 specification at http://www.w3.org/TR/REC-DOM-Level-1
The XML spec (Extensible Markup Language 1.0) at http://www.w3.org/TR/REC-xml
The XML::Parser and XML::Parser::Expat manual pages.

CAVEATS

The method getElementsByTagName() does not return a "live" NodeList. Whether this is an actual caveat is debatable, but a few people on the xml-dom mailing list seemed to think so. I haven't decided yet. It's a pain to implement, it slows things down and the benefits seem marginal. Let me know what you think.

AUTHORS

Enno Derksen <enno@att.com> and Clark Cooper <coopercl@sch.ge.com>. Please send bugs, comments and suggestions to Enno.

XML::DOM::UTF8

This module is an addition to XML::DOM to exploit Perl's utf8 support.

SYNOPSIS

use XML::DOM::UTF8;

use XML::DOM;

my $parser = new XML::DOM::Parser;

... etc ...

DESCRIPTION

If this module is 'use'd or 'require'd before XML::DOM it predefines some variables and methods that exploit the new utf8 features that come with Perl 5.005 50 and higher (Larry Wall recommended 5.005 55, because prior versions still contain some bugs.)

These utf8 features (see manpage utf8(3) or perldoc utf8) allowed me to extend the regular expressions - that match valid Names - with Unicode character codes greater than 127.

A "Name" in this context means the Name token as found in the BNF rules in the XML spec, which is used for Element tag names, Attribute names, Entity names, etc.

It also predefines the XmlUtf8Encode method, which is used to convert entity references like { and Ͽ to text values, and the encodeText method, which converts Unicode characters €- back to entity references on output. It might speed up the print methods (toString, printToFile etc.), but I haven't had a change to test it yet.

SEE ALSO

The XML::DOM manual page.

The utf8(3) manual page or 'perldoc utf8'

The perlre(1) manual page

AUTHOR

Enno Derksen <enno@att.com>
XML::Dumper

Module for dumping Perl objects from/to XML

SYNOPSIS

Convert Perl code to XML

use XML::Dumper;

my $data = [

 {

 first => 'Jonathan',

 last => 'Eisenzopf',

 email => 'eisen@pobox.com'

 },

 {

 first => 'Larry',

 last => 'Wall',

 email => 'larry@wall.org'

 }

];

$xml = $dump->pl2xml($perl);

Convert XML to Perl code

use XML::Parser;

use XML::Dumper;

$Tree = $parser->parsefile($xmlfile);

print the results

$data = $dump->xml2pl($Tree);

DESCRIPTION

XML::Dumper dumps Perl data to a structured XML format. XML::Dumper can also read XML data that was previously dumped by the module and convert it back to Perl.

This is done via the following 2 methods: XML::Dumper::pl2xml and XML::Dumper::xml2pl.

AUTHOR

Jonathan Eisenzopf, eisen@pobox.com
CREDITS

Chris Thorman <ct@ignitiondesign.com>

SEE ALSO

perl(1), XML::Parser(3).

XML::ESISParser

Perl SAX parser using nsgmls.

SYNOPSIS

use XML::ESISParser;

$parser = XML::ESISParser->new([OPTIONS]);

$result = $parser->parse([OPTIONS]);

$result = $parser->parse($string);

DESCRIPTION

`XML::ESISParser' is a Perl SAX parser using the nsgmls command of James Clark's SGML Parser (SP), a validating XML and SGML parser. This man page summarizes the specific options, handlers, and properties supported by `XML::ESISParser'; please refer to the Perl SAX standard in "SAX.pod" for general usage information.

`XML::ESISParser' defaults to parsing XML and has an option for parsing SGML.

``nsgmls'' source, and binaries for some platforms, is available from <http://www.jclark.com/>. ``nsgmls'' is included in both the SP and Jade packages.

METHODS

new

Creates a new parser object. Default options for parsing, described below, are passed as key-value pairs or as a single hash. Options may be changed directly in the parser object unless stated otherwise. Options passed to parse() override the default options in the parser object for the duration of the parse.

OPTIONS

The following options are supported by `XML::ESISParser':

Handler
default handler to receive events
DocumentHandler
handler to receive document events

DTDHandler
handler to receive DTD events

ErrorHandler
handler to receive error events

Source
hash containing the input source for parsing

IsSGML
the document to be parsed is in SGML

If no handlers are provided then all events will be silently ignored.

If a single string argument is passed to the parse() method, it is treated as if a Source option was given with a String parameter.

The ``Source'' hash may contain the following parameters:

ByteStream
The raw byte stream (file handle) containing the document.

String
A string containing the document.

SystemId
The system identifier (URI) of the document.

If more than one of ``ByteStream'', ``String'', or ``SystemId'', then preference is given first to ``ByteStream'', then ``String'', then ``SystemId''.

HANDLERS

The following handlers and properties are supported by `XML::ESISParser':

DocumentHandler methods

start_document

Receive notification of the beginning of a document.

No properties defined.

end_document

Receive notification of the end of a document.

No properties defined.

start_element

Receive notification of the beginning of an element.

Name
The element type name.

Attributes
A hash containing the attributes attached to the element, if any.

IncludedSubelement
This element is an included subelement.

Empty
This element is declared empty.

The ``Attributes'' hash contains only string values. The ``Empty'' flag is not set for an element that merely has no content, it is set only if the DTD declares it empty.

BETA: Attribute values currently do not expand SData entities into entity objects, they are still in the system data notation used by nsgmls (inside `|'). A future version of XML::ESISParser will also convert other types of attributes into their respective objects, currently just their notation or entity names are given.

end_element

Receive notification of the end of an element.

Name
The element type name.

characters

Receive notification of character data.

Data
The characters from the document.
record_end

Receive notification of a record end sequence. XML applications should convert this to a new-line.

processing_instruction

Receive notification of a processing instruction.

Target
The processing instruction target in XML.
Data
The processing instruction data, if any.
internal_entity_ref

Receive notification of a system data (SData) internal entity reference.

Name
The name of the internal entity reference.
external_entity_ref

Receive notification of a external entity reference.

Name
The name of the external entity reference.
start_subdoc

Receive notification of the start of a sub document.

Name
The name of the external entity reference.
end_subdoc

Receive notification of the end of a sub document.

Name
The name of the external entity reference.
conforming

Receive notification that the document just parsed conforms to it's document type declaration (DTD).

No properties defined.

DTDHandler methods

external_entity_decl

Receive notification of an external entity declaration.

Name
The entity's entity name.

Type
The entity's type (CDATA, NDATA, etc.)

SystemId
The entity's system identifier.

PublicId
The entity's public identifier, if any.

GeneratedId
Generated system identifiers, if any.
internal_entity_decl

Receive notification of an internal entity declaration.

Name
The entity's entity name.
Type
The entity's type (CDATA, NDATA, etc.)
Value
The entity's character value.
notation_decl

Receive notification of a notation declaration.

Name
The notation's name.
SystemId
The notation's system identifier.
PublicId
The notation's public identifier, if any.
GeneratedId
Generated system identifiers, if any.
subdoc_entity_decl

Receive notification of a subdocument entity declaration.

Name
The entity's entity name.
SystemId
The entity's system identifier.
PublicId
The entity's public identifier, if any.
GeneratedId
Generated system identifiers, if any.
external_sgml_entity_decl

Receive notification of an external SGML-entity declaration.

Name
The entity's entity name.
SystemId
The entity's system identifier.
PublicId
The entity's public identifier, if any.
GeneratedId
Generated system identifiers, if any.
AUTHOR

Ken MacLeod, ken@bitsko.slc.ut.us
SEE ALSO

perl(1), PerlSAX.pod(3)

Extensible Markup Language (XML) <http://www.w3c.org/XML/>

SAX 1.0: The Simple API for XML <http://www.megginson.com/SAX/>

SGML Parser (SP) <http://www.jclark.com/sp/>

XML::Edifact

The documentation for XML::Edifact is not reprinted here; if you are interested, download it from CPAN. An extract from the README file for 0.35 follows.

XML::Edifact -- an approach towards XML/EDI as a prototype in perl release 0.35 -- normalisation, namespaces, xml2edi

Michael Koehne, (kraehe@bakunin.north.de)

v0.35 release

XML::Edifact is a set of perl scripts, hopefully becoming a module, for translating EDIFACT into XML.

[...]

XML::Encoding

A perl module for parsing XML encoding maps.

SYNOPSIS

use XML::Encoding;

my $em_parser = new XML::Encoding(

 ErrorContext => 2,

 ExpatRequired => 1,

 PushPrefixFcn => \&push_prefix,

 PopPrefixFcn => \&pop_prefix,

 RangeSetFcn => \&range_set

);

my $encmap_name = $em_parser->parsefile($ARGV[0]);

DESCRIPTION

This module, which is built as a subclass of XML::Parser, provides a parser for encoding map files, which are XML files. The file maps/encmap.dtd in the distribution describes the structure of these files. Calling a parse method returns the name of the encoding map (obtained from the name attribute of the root element). The contents of the map are processed through the callback functions push_prefix, pop_prefix, and range_set.

METHODS

This module provides no additional methods to those provided by XML::Parser, but it does take the following additional options.

ExpatRequired

When this has a true value, then an error occurs unless the encmap "expat" attribute is set to "yes". Whether or not the ExpatRequired option is given, the parser enters expat mode if this attribute is set. In expat mode, the parser checks if the encoding violates expat restrictions.

PushPrefixFcn

The corresponding value should be a code reference to be called when a prefix element starts. The single argument to the callback is an integer which is the byte value of the prefix. An undef value should be returned if successful. If in expat mode, a defined value causes an error and is used as the message string.

PopPrefixFcn

The corresponding value should be a code reference to be called when a prefix element ends. No arguments are passed to this function. An undef value should be returned if successful. If in expat mode, a defined value causes an error and is used as the message string.

RangeSetFcn

The corresponding value should be a code reference to be called when a "range" or "ch" element is seen. The 3 arguments passed to this function are: (byte, unicode_scalar, length) The byte is the starting byte of a range or the byte being mapped by a "ch" element. The unicode_scalar is the Unicode value that this byte (with the current prefix) maps to. The length of the range is the last argument. This will be 1 for the "ch" element. An undef value should be returned if successful. If in expat mode, a defined value causes an error and is used as the message string.

AUTHOR

Clark Cooper <coopercc@netheaven.com>
SEE ALSO

XML::Parser

XML::Generator

Perl extension for generating XML

SYNOPSIS

use XML::Generator;

my $x = new XML::Generator;

print $x->foo($x->bar({baz=>3}, $x->bam()),

 $x->bar([qux],"Hey there,\n", "world"));

__END__

The above would yield:

<foo><bar baz="3"><bam/></bar><qux:bar>Hey there,

world</qux:bar></foo>

DESCRIPTION

XML::Generator is an extremely simple module to help in the generation of XML. Basically, you create an XML::Generator object and then call a method for each tag, supplying the contents of that tag as parameters. You can use a hash ref as the first parameter if the tag should include atributes. If the tag should be part of a namespace, supply an array ref as the first argument with each level of the namespace an element in the array. If you want to specify a namespace as well as attributes, you can make the second argument a hash ref. If you do it the other way around, the array ref will simply get stringified and included as part of the content of the tag. The XML is returned as a string. A valid XML document must consist of a single tag at the top level, but this module does nothing to enforce that.

AUTHOR

Benjamin Holzman, bholzman@bender.com
SEE ALSO

Perl-XML FAQ

http://www.pobox.com/~eisen/xml/perl-xml-faq.html

XML::Grove
XML

Simple, non-validating XML objects

SYNOPSIS

use XML::Parser;

use XML::Parser::Grove;

use XML::Grove;

$parser = XML::Parser->new(Style => 'grove');

$grove = $parser->parsefile ($xml_file);

All methods may also take a value to set the corresponding

property

XML::Grove

$root = $grove->root; # the one element in `contents'

$entities = $grove->entities; # an array of entity defs

$notations = $grove->notations; # an array of notation defs

$contents = $grove->contents; # may include PIs and comments

XML::Grove::Element

$name = $element->name;

$attributes = $element->attributes; # a hash

$contents = $element->contents; # an array

$value = $element->attr ($attr_name); # an array or scalar

XML::Grove::Entity

$name = $entity->name;

$data = $entity->data;

XML::Grove::PI

$target = $pi->target;

$data = $pi->data;

XML::Grove::Comment

$data = $comment->data;

DESCRIPTION

`XML::Grove' provides simple objects for parsed XML documents. The objects may be modified but no checking is performed by `XML::Grove'. `XML::Grove' objects do not include parsing information such as character positions or type of tags used.

The ``contents'' of an XML::Grove contains the root element possibly intermixed with processing instructions (PIs) or comments.

The ``contents'' of an XML::Grove::Element may contain elements (XML::Grove::Element), character data (Perl scalars), entity references (TBD, classes of XML::Grove::Entity), character references (TBD), processing instructions (XML::Grove::PI), and comments (XML::Grove::Comment).

The ``attributes'' of an XML::Grove::Element is an hash keyed by the attribute name, each attribute is either an array that may contain Perl scalars and entity references, or simply a Perl scalar.

To Be Determined (TBD): XML::Grove will be expanded to support additional objects and features of XML::Parser and SGML::SP::Generic as they become available. XML::Grove is intended to remain a simple module, other modules will be used to, for example, provide more parsing info, perform validation while modifying, or be able to write the same file that was read. XML::Grove and SGML::Grove should be nearly interchangeable.

AUTHOR

Ken MacLeod, ken@bitsko.slc.ut.us
SEE ALSO

perl(1), XML::Parser(3), XML::Parser::Grove(3).

Extensible Markup Language (XML) <http://www.w3c.org/XML>
XML::Grove::AsCanonXML

Output XML objects in canonical XML

SYNOPSIS

use XML::Grove::AsCanonXML;

$string = $xml_object->as_canon_xml OPTIONS;

$writer = new XML::Grove::AsCanonXML OPTIONS;

OPTIONS

$writer->comments([$bool]);

$string = $writer->as_canon_xml($xml_object);

$writer->as_canon_xml($xml_object, $file_handle);

DESCRIPTION

`XML::Grove::AsCanonXML' will return a string or write a stream of canonical XML for an XML object and its content (if any).

`XML::Grove::AsCanonXML' objects hold the options used for writing the XML objects. Options can be supplied when the the object is created,

$writer = new XML::Grove::AsCanonXML comments => 1;

or modified at any time before writing an XML object using the methods defined below.

OPTIONS

$writer->comments([$bool])

By default comments are not written to the output. Setting comment to TRUE will include comments in the output.

AUTHOR

Ken MacLeod, ken@bitsko.slc.ut.us
SEE ALSO

perl(1), XML::Parser(3), XML::Grove(3).

James Clark's Canonical XML definition <http://www.jclark.com/xml/canonxml.html>
XML::Grove::AsString

Output content of XML objects as a string

SYNOPSIS

use XML::Grove::AsString;

$string = $xml_object->as_string OPTIONS;

$string = $element->attr_as_string $attr, OPTIONS;

$writer = new XML::Grove::AsString OPTIONS;

OPTIONS

$writer->filter([\&callback]);

$writer->entity_map([\&callback]);

$writer->entity_map([$mapper]);

$writer->entity_map_options([\%options]);

$writer->entity_map_filter([$bool]);

$string = $writer->as_string($xml_object);

$writer->as_string($xml_object, $file_handle);

DESCRIPTION

Calling ``as_string'' on an XML object returns the character data contents of that object as a string, including all elements below that object. Calling ``attr_as_string'' on an element returns the contents of the named attribute as a string. Comments, processing instructions, and, by default, entities all return an empty string.

OPTIONS

OPTIONS may either be a key-value list or a hash containing the options described below. The default options are no filtering and entities are mapped to empty strings.

This list summarizes the options available for ``as_string'':

filter
sub to filter character data
entity_map
an object or sub to map character entities
entity_map_options
options passed to entity_map
entity_map_filter
true to use filter on mapped entities
filter is an anonymous sub that gets called to process character data before it is appended to the string to be returned. This can be used, for example, to escape characters that are special in output formats. ``entity_map_filter'' is a flag to indicate if mapped entities should be filtered after mapping. ``filter'' is called like this:

$string = &$filter($character_data);

entity_map is an object that accepts ``lookup'' methods or an anonymous sub that gets called with the entity replacement text (data) and mapper options as arguments and returns the corresponding character replacements. It is called like this:

$replacement_text =

 $entity_map->lookup($entity_data, $entity_map_options);

or this:

$replacement_text = &$entity_map($entity_data, $entity_map_options);

entity_map_options is passed through to the lookup method, the type of value is defined by the entity mapping package or the anonymous sub.

EXAMPLES

Here is an example of entity mapping using the Text::EntityMap module:

use Text::EntityMap;

use XML::Grove::AsString;

$html_iso_dia = Text::EntityMap->load('ISOdia.2html');

$html_iso_pub = Text::EntityMap->load('ISOpub.2html');

$html_map = Text::EntityMap->group($html_iso_dia, $html_iso_pub);

$element->as_string(entity_map => $html_map);

AUTHOR

Ken MacLeod, ken@bitsko.slc.ut.us
SEE ALSO

perl(1), XML::Parser(3), XML::Parser::Grove(3).

Extensible Markup Language (XML) <http://www.w3c.org/XML>
XML::Grove::Builder

Not Included XXX TODO FIXME

XML::Grove::IDs
XML-Grove

XML::Grove::Path
XML-Grove

XML::Grove::PerlSAX
XML-Grove

XML::Grove::Sub
XML-Grove

XML::Grove::Subst
XML-Grove

XML::Grove::ToObjects
XML-Grove

XML::Handler::Sample

A trivial Perl SAX handler

SYNOPSIS

use XML::Parser::PerlSAX;

use XML::Handler::Sample;

$my_handler = XML::Handler::Sample->new;

XML::Parser::PerlSAX->new->parse(

 Source => {

 SystemId => 'REC-xml-19980210.xml'

 },

 Handler => $my_handler

);

DESCRIPTION

`XML::Handler::Sample' is a trivial Perl SAX handler that prints out the name of each event it receives. The source for `XML::Handler::Sample' lists all the currently known PerlSAX handlers.

`XML::Handler::Sample' is intended for Perl module authors who wish to look at example PerlSAX handler modules.

AUTHOR

Ken MacLeod, ken@bitsko.slc.ut.us
SEE ALSO

perl(1), PerlSAX.pod(3)

XML::Parser

NAME

XML::Parser - A perl module for parsing XML documents

SYNOPSIS

use XML::Parser;

$p1 = new XML::Parser(Style => 'Debug');

$p1->parsefile('REC-xml-19980210.xml');

$p1->parse('<foo id="me">Hello World</foo>');

Alternative

$p2 = new XML::Parser(Handlers => {Start => \&handle_start,

 End => \&handle_end,

 Char => \&handle_char});

$p2->parse($socket);

Another alternative

$p3 = new XML::Parser(ErrorContext => 2);

$p3->setHandlers(Char => \&text,

 Default => \&other);

open(FOO, 'xmlgenerator |');

$p3->parse(*FOO, ProtocolEncoding => 'ISO-8859-1');

close(FOO);

$p3->parsefile('junk.xml', ErrorContext => 3);

DESCRIPTION

This module provides ways to parse XML documents. It is built on top of the XML::Parser::Expat manpage, which is a lower level interface to James Clark's expat library. Each call to one of the parsing methods creates a new instance of XML::Parser::Expat which is then used to parse the document. Expat options may be provided when the XML::Parser object is created. These options are then passed on to the Expat object on each parse call. They can also be given as extra arguments to the parse methods, in which case they override options given at XML::Parser creation time.

The behavior of the parser is controlled either by `the section on "/Style'" and/or `the section on "/Handlers'" options, or by the setHandlers entry elsewhere in this document method. These all provide mechanisms for XML::Parser to set the handlers needed by XML::Parser::Expat. If neither `Style' nor `Handlers' are specified, then parsing just checks the document for being well-formed.

When underlying handlers get called, they receive as their first parameter the *Expat* object, not the Parser object.

METHODS

new

This is a class method, the constructor for XML::Parser. Options are passed as keyword value pairs. Recognized options are:

Style

This option provides an easy way to create a given style of parser. The built in styles are: the section on "Debug", the section on "Subs", the section on "Tree", the section on "Objects", and the section on "Stream". Custom styles can be provided by giving a full package name containing at least one '::'. This package should then have subs defined for each handler it wishes to have installed. See the section on "STYLES" below for a discussion of each built in style.

Handlers

When provided, this option should be an anonymous hash containing as keys the type of handler and as values a sub reference to handle that type of event. All the handlers get passed as their 1st parameter the instance of expat that is parsing the document. Further details on handlers can be found in the section on "HANDLERS". Any handler set here overrides the corresponding handler set with the Style option.

Pkg

Some styles will refer to subs defined in this package. If not provided, it defaults to the package which called the constructor.

ErrorContext

This is an Expat option. When this option is defined, errors are reported in context. The value should be the number of lines to show on either side of the line in which the error occurred.

ProtocolEncoding

This is an Expat option. This sets the protocol encoding name. It defaults to none. The built-in encodings are: `UTF-8', `ISO-8859-1', `UTF-16', and `US-ASCII'. Other encodings may be used if they have encoding maps in one of the directories in the @Encoding_Path list. Check the section on "ENCODINGS" for more information on encoding maps. Setting the protocol encoding overrides any encoding in the XML declaration.

Namespaces

This is an Expat option. If this is set to a true value, then namespace processing is done during the parse. See the section on "Namespaces" in the XML::Parser::Expat manpage for further discussion of namespace processing.

NoExpand

This is an Expat option. Normally, the parser will try to expand references to entities defined in the internal subset. If this option is set to a true value, and a default handler is also set, then the default handler will be called when an entity reference is seen in text. This has no effect if a default handler has not been registered, and it has no effect on the expansion of entity references inside attribute values.

Stream_Delimiter

This is an Expat option. It takes a string value. When this string is found alone on a line while parsing from a stream, then the parse is ended as if it saw an end of file. The intended use is with a stream of xml documents in a MIME multipart format. The string should not contain a trailing newline.

Non-Expat-Options

If provided, this should be an anonymous hash whose keys are options that shouldn't be passed to Expat. This should only be of concern to those subclassing XML::Parser.

setHandlers(TYPE, HANDLER [, TYPE, HANDLER [...]])

This method registers handlers for various parser events. It overrides any previous handlers registered through the Style or Handler options or through earlier calls to setHandlers. By providing a false or undefined value as the handler, the existing handler can be unset. See a description of the handler types in the section on "HANDLERS".

parse(SOURCE [, OPT => OPT_VALUE [...]])

The SOURCE parameter should either be a string containing the whole XML document, or it should be an open IO::Handle. Constructor options to XML::Parser::Expat given as keyword- value pairs may follow the SOURCE parameter. These override, for this call, any options or attributes passed through from the XML::Parser instance.

A die call is thrown if a parse error occurs. Otherwise it will return 1 or whatever is returned from the Final handler, if one is installed. In other words, what parse may return depends on the style.

parsestring

This is just an alias for parse for backwards compatibility.

parsefile(FILE [, OPT => OPT_VALUE [...]])

Open FILE for reading, then call parse with the open handle. The file is closed no matter how parse returns. Returns what parse returns.

parse_start([OPT => OPT_VALUE [...]])

Create and return a new instance of XML::Parser::ExpatNB. Constructor options may be provided. If an init handler has been provided, it is called before returning the ExpatNB object. Documents are parsed by making incremental calls to the parse_more method of this object, which takes a string. A single call to the parse_done method of this object, which takes no arguments, indicates that the document is finished.

If there is a final handler installed, it is executed by the parse_done method before returning and the parse_done method returns whatever is returned by the final handler.

ExpatNB objects do not handle the position_in_context or original_string methods and they do not honor the ErrorContext option.

HANDLERS

Expat is an event based parser. As the parser recognizes parts of the document (say the start or end tag for an XML element), then any handlers registered for that type of an event are called with suitable parameters. All handlers receive an instance of XML::Parser::Expat as their first argument. See the section on "METHODS" in the XML::Parser::Expat manpage for a discussion of the methods that can be called on this object.

Init (Expat)

This is called just before the parsing of the document starts.

Final (Expat)

This is called just after parsing has finished, but only if no errors occurred during the parse. Parse returns what this returns.

Start (Expat, Element [, Attr, Val [,...]])

This event is generated when an XML start tag is recognized. Element is the name of the XML element type that is opened with the start tag. The Attr & Val pairs are generated for each attribute in the start tag.

End (Expat, Element)

This event is generated when an XML end tag is recognized. Note that an XML empty tag (<foo/>) generates both a start and an end event.

Char (Expat, String)

This event is generated when non-markup is recognized. The non- markup sequence of characters is in String. A single non-markup sequence of characters may generate multiple calls to this handler. Whatever the encoding of the string in the original document, this is given to the handler in UTF-8.

Proc (Expat, Target, Data)

This event is generated when a processing instruction is recognized.

Comment (Expat, Data)

This event is generated when a comment is recognized.

CdataStart (Expat)

This is called at the start of a CDATA section.

CdataEnd (Expat)

This is called at the end of a CDATA section.

Default (Expat, String)

This is called for any characters that don't have a registered handler. This includes both characters that are part of markup for which no events are generated (markup declarations) and characters that could generate events, but for which no handler has been registered.

Whatever the encoding in the original document, the string is returned to the handler in UTF-8.

Unparsed (Expat, Entity, Base, Sysid, Pubid, Notation)

This is called for a declaration of an unparsed entity. Entity is the name of the entity. Base is the base to be used for resolving a relative URI. Sysid is the system id. Pubid is the public id. Notation is the notation name. Base and Pubid may be undefined.

Notation (Expat, Notation, Base, Sysid, Pubid)

This is called for a declaration of notation. Notation is the notation name. Base is the base to be used for resolving a relative URI. Sysid is the system id. Pubid is the public id. Base, Sysid, and Pubid may all be undefined.

ExternEnt (Expat, Base, Sysid, Pubid)

This is called when an external entity is referenced. Base is the base to be used for resolving a relative URI. Sysid is the system id. Pubid is the public id. Base, and Pubid may be undefined.

This handler should either return a string, which represents the contents of the external entity, or return an open filehandle that can be read to obtain the contents of the external entity, or return undef, which indicates the external entity couldn't be found and will generate a parse error.

If an open filehandle is returned, it must be returned as either a glob (*FOO) or as a reference to a glob (e.g. an instance of IO::Handle). The parser will close the filehandle after using it.

A default handler, XML::Parser::default_ext_ent_handler, is installed for this. It only handles the file URL method and it assumes "file:" if it isn't there. The expat base method can be used to set a basename for relative pathnames. If no basename is given, or if the basename is itself a relative name, then it is relative to the current working directory.

Entity (Expat, Name, Val, Sysid, Pubid, Ndata)

This is called when an entity is declared in the internal subset. For internal entities, the Val parameter will contain the value and the remaining three parameters will be undefined. For external entities, the Val parameter will be undefined, the Sysid parameter will have the system id, the Pubid parameter will have the public id if it was provided (it will be undefined otherwise), the Ndata parameter will contain the notation for unparsed entities. If this is a parameter entity declaration, then a '%' will be prefixed to the name.

Note that this handler and the Unparsed handler above overlap. If both are set, then this handler will not be called for unparsed entities.

Element (Expat, Name, Model)

The element handler is called when an element declaration is found in the internal subset. Name is the element name, and Model is the content model as a string.

Attlist (Expat, Elname, Attname, Type, Default, Fixed)

This handler is called for each attribute in an ATTLIST declaration found in the internal subset. So an ATTLIST declaration that has multiple attributes will generate multiple calls to this handler. The Elname parameter is the name of the element with which the attribute is being associated. The Attname parameter is the name of the attribute. Type is the attribute type, given as a string. Default is the default value, which will either be "#REQUIRED", "#IMPLIED" or a quoted string (i.e. the returned string will begin and end with a quote character). If Fixed is true, then this is a fixed attribute.

Doctype (Expat, Name, Sysid, Pubid, Internal)

This handler is called for DOCTYPE declarations. Name is the document type name. Sysid is the system id of the document type, if it was provided, otherwise it's undefined. Pubid is the public id of the document type, which will be undefined if no public id was given. Internal is the internal subset, given as a string. If there was no internal subset, it will be undefined. Internal will contain all whitespace, comments, processing instructions, and declarations seen in the internal subset. The declarations will be there whether or not they have been processed by another handler (except for unparsed entities processed by the Unparsed handler). However, comments and processing instructions will not appear if they've been processed by their respective handlers.

XMLDecl (Expat, Version, Encoding, Standalone)

This handler is called for xml declarations. Version is a string containg the version. Encoding is either undefined or contains an encoding string. Standalone will be either true, false, or undefined if the standalone attribute is yes, no, or not made respectively.

STYLES

Debug

This just prints out the document in outline form. Nothing special is returned by parse.

Subs

Each time an element starts, a sub by that name in the package specified by the Pkg option is called with the same parameters that the Start handler gets called with.

Each time an element ends, a sub with that name appended with an underscore ("_"), is called with the same parameters that the End handler gets called with.

Nothing special is returned by parse.

Tree

Parse will return a parse tree for the document. Each node in the tree takes the form of a tag, content pair. Text nodes are represented with a pseudo-tag of "0" and the string that is their content. For elements, the content is an array reference. The first item in the array is a (possibly empty) hash reference containing attributes. The remainder of the array is a sequence of tag-content pairs representing the content of the element.

So for example the result of parsing:

<foo><head id="a">Hello there</head><bar>Howdy<ref/></bar>do</foo>

would be: Tag Content

[foo, [{}, head, [{id => "a"}, 0, "Hello ", em, [{}, 0,

"there"]], bar, [{}, 0, "Howdy", ref, [{}]], 0, "do"]]

The root document "foo", has 3 children: a "head" element, a "bar" element and the text "do". After the empty attribute hash, these are represented in it's contents by 3 tag-content pairs.

Objects

This is similar to the Tree style, except that a hash object is created for each element. The corresponding object will be in the class whose name is created by appending "::" and the element name to the package set with the Pkg option. Non-markup text will be in the ::Characters class. The contents of the corresponding object will be in an anonymous array that is the value of the Kids property for that object.

Stream

This style also uses the Pkg package. If none of the subs that this style looks for is there, then the effect of parsing with this style is to print a canonical copy of the document without comments or declarations. All the subs receive as their 1st parameter the Expat instance for the document they're parsing. It looks for the following routines:

StartDocument

Called at the start of the parse .

StartTag

Called for every start tag with a second parameter of the element type. The $_ variable will contain a copy of the tag and the %_ variable will contain attribute values supplied for that element.

EndTag

Called for every end tag with a second parameter of the element type. The $_ variable will contain a copy of the end tag.

Text

Called just before start or end tags with accumulated non- markup text in the $_ variable.

PI

Called for processing instructions. The $_ variable will contain a copy of the PI and the target and data are sent as 2nd and 3rd parameters respectively.

EndDocument

Called at conclusion of the parse.

ENCODINGS

XML documents may be encoded in character sets other than Unicode as long as they may be mapped into the Unicode character set. Expat has further restrictions on encodings. Read the xmlparse.h header file in the expat distribution to see details on these restrictions.

Expat has built-in encodings for: `UTF-8', `ISO-8859-1', `UTF- 16', and `US-ASCII'. Encodings are set either through the XML declaration encoding attribute or through the ProtocolEncoding option to XML::Parser or XML::Parser::Expat.

For encodings other than the built-ins, expat calls the function load_encoding in the Expat package with the encoding name. This function looks for a file in the path list @XML::Parser::Expat::Encoding_Path, that matches the lower-cased name with a '.enc' extension. The first one it finds, it loads.

If you wish to build your own encoding maps, check out the XML::Encoding module from CPAN.

AUTHORS

Larry Wall <larry@wall.org> wrote version 1.0.

Clark Cooper <coopercc@netheaven.com> picked up support, changed the API for this version (2.x), provided documentation, and added some standard package features.

XML::Parser::DOM

XML::Parser::Debug
XML-Parser

XML::Parser::Objects
XML-Parser

XML::Parser::PerlSAX
libxml

Perl SAX parser using XML::Parser

SYNOPSIS

use XML::Parser::PerlSAX;

$parser = XML::Parser::PerlSAX->new([OPTIONS]);

$result = $parser->parse([OPTIONS]);

$result = $parser->parse($string);

DESCRIPTION

`XML::Parser::PerlSAX' is a Perl SAX parser using the XML::Parser module. This man page summarizes the specific options, handlers, and properties supported by `XML::Parser::PerlSAX'; please refer to the Perl SAX standard in ``SAX.pod'' for general usage information.

METHODS

new

Creates a new parser object. Default options for parsing, described below, are passed as key-value pairs or as a single hash. Options may be changed directly in the parser object unless stated otherwise. Options passed to ``parse()'' override the default options in the parser object for the duration of the parse.

parse

Parses a document. Options, described below, are passed as key-value pairs or as a single hash. Options passed to ``parse()'' override default options in the parser object.

location

Returns the location as a hash:

ColumnNumber
The column number of the parse.
LineNumber
The line number of the parse.
BytePosition
The current byte position of the parse.
PublicId
A string containing the public identifier, or undef if none is available.
SystemId
A string containing the system identifier, or undef if none is available.
Base
The current value of the base for resolving relative URIs.
ALPHA WARNING: The SystemId and PublicId properties returned are the system and public identifiers of the document passed to parse(), not the identifiers of the currently parsing external entity. The column, line, and byte positions are of the current entity being parsed.

OPTIONS

The following options are supported by `XML::Parser::PerlSAX':

Handler
default handler to receive events
DocumentHandler
handler to receive document events
DTDHandler
handler to receive DTD events
ErrorHandler
handler to receive error events
EntityResolver
handler to resolve entities
Locale
locale to provide localisation for errors
Source
hash containing the input source for parsing
If no handlers are provided then all events will be silently ignored, except for fatal_error() which will cause die to be called after calling end_document().

If a single string argument is passed to the ``parse()'' method, it is treated as if a ``Source'' option was given with a ``String'' parameter.

The ``Source'' hash may contain the following parameters:

ByteStream
The raw byte stream (file handle) containing the document.
String
A string containing the document.
SystemId
The system identifier (URI) of the document.
PublicId
The public identifier.
Encoding
A string describing the character encoding.
If more than one of ``ByteStream'', ``String'', or ``SystemId'', then preference is given first to ``ByteStream'', then ``String'', then ``SystemId''.

HANDLERS

The following handlers and properties are supported by `XML::Parser::PerlSAX':

DocumentHandler methods

start_document

Receive notification of the beginning of a document.

No properties defined.

end_document

Receive notification of the end of a document.

No properties defined.

start_element

Receive notification of the beginning of an element.

Name
The element type name.
Attributes
A hash containing the attributes attached to the element, if any.
The ``Attributes'' hash contains only string values.

end_element

Receive notification of the end of an element.

Name
The element type name.

characters

Receive notification of character data.

Data
The characters from the XML document.
processing_instruction

Receive notification of a processing instruction.

Target
The processing instruction target.
Data
The processing instruction data, if any.
comment Receive notification of a comment.

Data
The comment data, if any.
DTDHandler methods

notation_decl

Receive notification of a notation declaration event.

Name
The notation name.
PublicId
The notation's public identifier, if any.
SystemId
The notation's system identifier, if any.
Base
The base for resolving a relative URI, if any.
unparsed_entity_decl

Receive notification of an unparsed entity declaration event.

Name
The unparsed entity's name.
SystemId
The entity's system identifier.
PublicId
The entity's public identifier, if any.
Base
The base for resolving a relative URI, if any.
entity_decl

Receive notification of an entity declaration event.

Name
The entity name.
Value
The entity value, if any.
PublicId
The notation's public identifier, if any.
SystemId
The notation's system identifier, if any.
Notation
The notation declared for this entity, if any.
For internal entities, the ``Value'' parameter will contain the value and the ``PublicId'', ``SystemId'', and ``Notation'' will be undefined. For external entities, the ``Value'' parameter will be undefined, the ``SystemId'' parameter will have the system id, the ``PublicId'' parameter will have the public id if it was provided (it will be undefined otherwise), the ``Notation'' parameter will contain the notation name for unparsed entities. If this is a parameter entity declaration, then a '%' will be prefixed to the entity name.

Note that ``entity_decl()'' and ``unparsed_entity_decl()'' overlap. If both methods are implemented by a handler, then this handler will not be called for unparsed entities.

element_decl

Receive notification of an element declaration event.

Name
The element type name.
Model
The content model as a string.
attlist_decl

Receive notification of an attribute list declaration event.

This handler is called for each attribute in an ATTLIST declaration found in the internal subset. So an ATTLIST declaration that has multiple attributes will generate multiple calls to this handler.

ElementName
The element type name.
AttributeName
The attribute name.
Type
The attribute type.
Fixed
True if this is a fixed attribute.
The default for ``Type'' is the default value, which will either be "#REQUIRED", "#IMPLIED" or a quoted string (i.e. the returned string will begin and end with a quote character).

doctype_decl

Receive notification of a DOCTYPE declaration event.

Name
The document type name.
SystemId
The document's system identifier.
PublicId
The document's public identifier, if any.
Internal
The internal subset as a string, if any.
Internal will contain all whitespace, comments, processing instructions, and declarations seen in the internal subset. The declarations will be there whether or not they have been processed by another handler (except for unparsed entities processed by the Unparsed handler). However, comments and processing instructions will not appear if they've been processed by their respective handlers.

xml_decl

Receive notification of an XML declaration event.

Version
The version.

Encoding
The encoding string, if any.

Standalone
True, false, or undefined if not declared.

EntityResolver

resolve_entity

Allow the handler to resolve external entities.

Name
The notation name.

SystemId
The notation's system identifier.

PublicId
The notation's public identifier, if any.

Base
The base for resolving a relative URI, if any.

``resolve_entity()'' should return undef to request that the parser open a regular URI connection to the system identifier or a hash describing the new input source. This hash has the same properties as the ``Source'' parameter to ``parse()'':

PublicId
The public identifier of the external entity being referenced, or undef if none was supplied.
SystemId
The system identifier of the external entity being referenced.
String
String containing XML text.
ByteStream
An open file handle.
CharacterStream
An open file handle.
Encoding
The character encoding, if known.
AUTHOR

Ken MacLeod, ken@bitsko.slc.ut.us
SEE ALSO

perl(1), PerlSAX.pod(3)

Extensible Markup Language (XML) <http://www.w3c.org/XML/>
SAX 1.0: The Simple API for XML <http://www.megginson.com/SAX/>
XML::Parser::Stream

XML::Parser::Subs
XML-Parser

XML::Parser::Tree
XML-Parser

XML::Perl2SAX

Translate Perl SAX methods to Java/CORBA style methods.

SYNOPSIS

use XML::Perl2SAX;

$perl2sax = XML::Perl2SAX(handler => $java_style_handler);

DESCRIPTION

`XML::Perl2SAX' is a SAX filter that translates Perl style SAX methods to Java/CORBA style method calls. This module performs the inverse operation from `XML::SAX2Perl'.

`Perl2SAX' is a Perl SAX document handler. The new method takes a "handler" argument that is a Java/CORBA style handler that the new Perl2SAX instance will call. The SAX interfaces are defined at <http://www.megginson.com/SAX/>.

AUTHOR

Ken MacLeod <ken@bitsko.slc.ut.us>
SEE ALSO

perl(1), XML::Perl2SAX(3).

Extensible Markup Language (XML) <http://www.w3c.org/XML/>
Simple API for XML (SAX) <http://www.megginson.com/SAX/>
XML::QL
XML-QL

An XML query language

NOTE

[Compare this with XML::XQL]

VERSION

0.05 beta

SYNOPSIS

$ql = 'WHERE <head>$head</head>

 ORDER-BY $head

 IN "file:REC-xml-19980210.xml"

 CONSTRUCT $head';

print XML::QL->query($sql);

DESCRIPTION

This module is an early implementation of a note published by the W3C called "XML-QL: A Query Language for XML". XML-QL allows the user to query an XML document much like a database, and describe a construct for output. Currently this module only offers partial functionality as described in the specification, and even some of that has been changed for ease of use. This documentation will describe the fuctionality of this module as well as differences from the XML-QL specification.

METHODS

query("query")

This is the only method required to use this module. This one method allows the user to pass a valid XML-QL query to the module, and the return value is the output.

XML-QL: The Query Language

The basic syntax consists of two parts, a WHERE clause to describe the data to search for, and a CONSTRUCT clause to describe how to return the data that is found.

WHERE

WHERE XML-searchstring

 [ORDER-BY variable [DESCENDING]

 [, variable [DESCENDING]]] IN 'filename'

The WHERE clause can be separated into several parts. The first is the search string, the second is an optional ORDER- BY clause much like ORDER BY in SQL, and last is the required XML document file name. Each of these parts is described below.

XML-searchstring

The search string MUST be a valid XML snippet. This is one are where this module differs from the specification. It has been implemented in this way so that the search string may be parsed by the XML::Parser module.

The first step in building a query is to list the tags to search for in the document. For example, consider the following search string:

<BOOK>

 <AUTHOR></AUTHOR>

</BOOK>

This search string will search for the AUTHOR tag nested within a BOOK tag. Note however that no information has been selected for retrieval. In the following example, we actually grab some information:

<BOOK>

 <AUTHOR>$author</AUTHOR>

</BOOK>

The variable name $author will grab the information that it finds within this tag, and makes this information available to us for use in the CONSTRUCT section of the query. You will notice that variable names start with a dollar sign ($), as this is called for by the specification. In Perl, this means that if the query is enclosed in double quotes, this dollar sign must be escaped.

In the following example we take it a step further by searching for books of that are non-fiction:

<BOOK TYPE='non-fiction'>

 <AUTHOR>$author</AUTHOR>

</BOOK>

We can also express this as a regular expression:

<BOOK TYPE='non-.*'>

 <AUTHOR>$author</AUTHOR>

</BOOK>

This is another area where this module differs from the specification. The regular expression ability as defined in the specification only allows for a subset of the ability available in a Perl regular expression. With this module, the full range of regular expression syntax has been made available. This also means that you must also escape things such as periods(.), parentheses (), and brackets ([]). All non tag [sic] matched are case insensitive.

Now lets say that besides matching the TYPE, we also wanted to grab the value. Consider this example:

<BOOK TYPE='non-.* AS_ELEMENT $type'>

 <AUTHOR>$author</AUTHOR>

</BOOK>

The AS_ELEMENT keyword allows you to save the matched value for later use in the CONSTRUCT portion of the query.

ORDER-BY

The ORDER-BY clause allows to sort the data retrieved in the variables. You may specify multiple variables, and specify DESCENDING for a reverse sort. This clause is not required. For example:

ORDER-BY $type, $author DESCENDING

IN

The IN clause is a required clause that specifies the file name of the XML file. This can be any URI that is supported by LWP, or it can be a single file name enclosed in quotes. In later versions of this module there will be support for multiple files, directories. The following will work:

IN 'REC-xml-19980210.xml'

IN 'file://othermachine/share/filename.xml'

IN 'http://www.example.com/file.xml'

CONSTRUCT

The CONSTRUCT construct allows you to specify a template for output. The template will match character for character from the first space after the word CONSTRUCT to the end of the XML-QL query. For example:

$ql = '(where clause...) CONSTRUCT Type: $type Author:

$author';

The ouput of this will then be a carriage return, a tab, "Type: ", the contents of $type, a carriage return, a tab, "Author: ", and the contents of $author. This construct will be repeated for every match found and returned as a single string.

AUTHOR

Robert Hanson - Initial Version rhanson@blast.net
Matt Sergeant - Only minor fixes so far msergeant@ndirect.co.uk, sergeant@geocities.com
COPYRIGHT

Robert's Original licence was: I hereby reserve NO rights to this module, except for maybe a little recognition if you decide to rewrite it and redistribute as your own. Beyond that, you can do whatever you want with this. I would just appreciate a copy of any improvements to this module.

However that only stands for version 0.01 of the module. All versions above that are released under the same terms as Perl itself.

XML::Registry

Perl module for loading and saving an XML registry.

SYNOPSIS

use XML::Parser;

use XML::Registry;

create a new XML::Parser instance using Tree Style

$parser = new XML::Parser (Style => 'Tree');

create new instance of XML::Registry

$dump = new XML::Registry;

Convert XML Registry to Perl code

$tree = $parser->parsefile($file);

$tree = $parser->parse('<foo id="me">Hello World</foo>');

print the results

print $dump->xml2pl($tree);

Convert Perl code to XML Registry

read file in Data::Dumper format

open(PL,$file) || die "Cannot open $file: $!";

$perl = eval(join("",<PL>));

print the results

print $dump->pl2xml($perl);

DESCRIPTION

XML::Registry can dump an XML registry to Perl code using Data::Dumper, or dump Perl code into an XML registry.

This is done via the following two methods: XML::Registry::xml2pl and XML::Registry::pl2xml.

This module was originally written for an article in TPJ [The Perl Journal, a magazine -- Liam]. It was an exercise in using the XML::Parser module.

AUTHOR

Jonathan Eisenzopf, eisen@pobox.com
SEE ALSO

perl(1), XML::Parser(3).

XML::SAX2Perl

Translate Java/CORBA style SAX methods to Perl methods.

SYNOPSIS

use XML::SAX2Perl;

$sax2perl = XML::SAX2Perl(Handler => $my_handler);

$sax->setDocumentHandler($sax2perl);

DESCRIPTION

`XML::SAX2Perl' is a SAX filter that translates Java/CORBA style SAX methods to Perl style method calls. This man page summarizes the specific options, handlers, and properties supported by `XML::SAX2Perl'; please refer to the Perl SAX standard `XML::SAX' for general usage information.

METHODS

new

Creates a new parser object. Default options for parsing, described below, are passed as key-value pairs or as a single hash. Options may be changed directly in the parser object unless stated otherwise. Options passed to parse() override the default options in the parser object for the duration of the parse.

parse

Parses a document. Options, described below, are passed as key-value pairs or as a single hash. Options passed to ``parse()'' override default options in the parser object.

location

Returns the location as a hash:

ColumnNumber
The column number of the parse.
LineNumber
The line number of the parse.
PublicId
A string containing the public identifier, or undef if none is available.
SystemId
A string containing the system identifier, or undef if none is available.
SAX DocumentHandler Methods

The following methods are DocumentHandler methods that the SAX 1.0 parser will call and `XML::SAX2Perl' will translate to Perl SAX methods calls. See SAX 1.0 for details.

setDocumentLocator(locator)

startDocument()

endDocument()

startElement(name, atts)

endElement(name)

characters(ch, start, length)

ignorableWhitespace(ch, start, length)

processingInstruction(target, data)

OPTIONS

The following options are supported by `XML::SAX2Perl':

Handler
default handler to receive events
DocumentHandler
handler to receive document events
DTDHandler
handler to receive DTD events
ErrorHandler
handler to receive error events
EntityResolver
handler to resolve entities
Locale
locale to provide localisation for errors
Source
hash containing the input source for parsing
If no handlers are provided then all events will be silently ignored, except for fatal_error() which will cause a die() to be called after calling end_document().

If a single string argument is passed to the ``parse()'' method, it is treated as if a ``Source'' option was given with a ``String'' parameter.

The ``Source'' hash may contain the following parameters:

ByteStream
The raw byte stream (file handle) containing the document.
String
A string containing the document.

SystemId
The system identifier (URI) of the document.

PublicId
The public identifier.

Encoding
A string describing the character encoding.

If more than one of ``ByteStream'', ``String'', or ``SystemId'', then preference is given first to ``ByteStream'', then ``String'', then ``SystemId''.

HANDLERS

The following handlers and properties are supported by `XML::SAX2Perl':

DocumentHandler methods

start_document

Receive notification of the beginning of a document.

Locator
An object that can return the location of any SAX document event.

end_document

Receive notification of the end of a document.

No properties defined.

start_element

Receive notification of the beginning of an element.

Name
The element type name.
Attributes
Attributes attached to the element, if any.
ALPHA WARNING: The ``Attributes'' value is not translated from the SAX 1.0 value, so it will contain an AttributeList object.

end_element

Receive notification of the end of an element.

Name
The element type name.
characters

Receive notification of character data.

Data
The characters from the XML document.
ignorable_whitespace

Receive notification of ignorable whitespace in element content.

Data
The characters from the XML document.
processing_instruction

Receive notification of a processing instruction.

Target
The processing instruction target.
Data
The processing instruction data, if any.
AUTHOR

Ken MacLeod <ken@bitsko.slc.ut.us>
SEE ALSO

perl(1), XML::Perl2SAX(3).

Extensible Markup Language (XML) <http://www.w3c.org/XML/>
Simple API for XML (SAX) <http://www.megginson.com/SAX/>
XML::Writer

Perl extension for writing XML documents.

SYNOPSIS

use XML::Writer;

use IO;

my $output = new IO::File(">output.xml");

my $writer = new XML::Writer(OUTPUT => $output);

$writer->startTag("greeting", "class" => "simple");

$writer->characters("Hello, world!");

$writer->endTag("greeting");

$writer->end();

$output->close();

DESCRIPTION

XML::Writer is a helper module for Perl programs that write an XML document. The module handles all escaping for attribute values and character data and constructs different types of markup, such as tags, comments, and processing instructions.

By default, the module performs several well-formedness checks to catch errors during output. This behaviour can be extremely useful during development and debugging, but it can be turned off for production-grade code.

The module can operate either in regular mode in or Namespace processing mode. In Namespace mode, the module will generate Namespace Declarations itself, and will perform additional checks on the output.

METHODS

Writing XML

new([$params])

Create a new XML::Writer object:

my $writer = new XML::Writer(OUTPUT => $output, NEWLINES => 1);

Arguments are an anonymous hash array of parameters:

OUTPUT
An object blessed into IO::Handle or one of its subclasses (such as IO::File); if this parameter is not present, the module will write to standard output.
NAMESPACES
A true (1) or false (0, undef) value; if this parameter is present and its value is true, then the module will accept two-member array reference in the place of element and attribute names, as in the following example:
 my $rdfns = "http://www.w3.org/1999/02/22-rdf-syntax-ns#";

 my $writer = new XML::Writer(NAMESPACES => 1);

 $writer->startTag([$rdfns, "Description"]);

The first member of the array is a namespace URI, and the second part is the local part of a qualified name. The module will automatically generate appropriate namespace declarations and will replace the URI part with a prefix.

PREFIX_MAP
A hash reference; if this parameter is present and the module is performing namespace processing (see the NAMESPACES parameter), then the module will use this hash to look up preferred prefixes for namespace URIs:
 my $rdfns = "http://www.w3.org/1999/02/22-rdf-syntax-ns#";

 my $writer = new XML::Writer(

 NAMESPACES => 1,

 PREFIX_MAP => {$rdfns => 'rdf'}

);

The keys in the hash table are namespace URIs, and the values are the associated prefixes. If there is not a preferred prefix for the namespace URI in this hash, then the module will automatically generate prefixes of the form "__NS1", "__NS2", etc.

To set the default namespace, use '' [the empty string] for the prefix.

NEWLINES
A true or false value; if this parameter is present and its value is true, then the module will insert an extra newline before the closing delimiter of start, end, and empty tags to guarantee that the document does not end up as a single, long line. If the paramter is not present, the module will not insert the newlines.

UNSAFE
A true or false value; if this parameter is present and its value is true, then the module will skip most well- formedness error checking. If the parameter is not present, the module will perform the well-formedness error checking by default. Turn off error checking at your own risk!

end()

Finish creating an XML document. This method will check that the document has exactly one document element, and that all start tags are closed:

$writer->end();

xmlDecl([$standalone])

Add an XML declaration to the beginning of an XML document. The version will always be "1.0", and the encoding will always be "UTF-8". If you provide the $standalone argument, the module will include it as the value of the 'standalone' pseudo-attribute:

$writer->xmlDecl();

comment($text)

Add a comment to an XML document. If the comment appears outside the document element (either before the first start tag or after the last end tag), the module will add a carriage return after it to improve readability:

$writer->comment("This is a comment");

pi($target [, $data])

Add a processing instruction to an XML document:

$writer->pi('xml-stylesheet', 'href="style.css" type="text/css"');

If the processing instruction appears outside the document element (either before the first start tag or after the last end tag), the module will add a carriage return after it to improve readability.

The $target argument must be a single XML name. If you provide the $data argument, the module will insert its contents following the $target argument, separated by a single space.

startTag($name [, $aname1 => $value1, ...])

Add a start tag to an XML document. Any arguments after the element name are assumed to be name/value pairs for attributes: the module will escape all '&', '<', '>', and '"' characters in the attribute values using the predefined XML entities:

$writer->startTag('doc',

 'version' => '1.0',

 'status' => 'draft',

 'topic' => 'AT&T'

);

All start tags must eventually have matching end tags.

emptyTag($name [, $aname1 => $value1, ...])

Add an empty tag to an XML document. Any arguments after the element name are assumed to be name/value pairs for attributes (see startTag() for details):

$writer->emptyTag('img',

 'src' => 'portrait.jpg',

 'alt' => 'Portrait of Emma.'

);

endTag([$name])

Add an end tag to an XML document. The end tag must match the closest open start tag, and there must be a matching and properly-nested end tag for every start tag:

$writer->endTag('doc');

If the $name argument is omitted, then the module will automatically supply the name of the currently open element:

$writer->startTag('p');

$writer->endTag();

characters($data)

Add character data to an XML document. All '<', '>', and '&' characters in the $data argument will automatically be escaped using the predefined XML entities:

$writer->characters("Here is the formula: ");

$writer->characters("a < 100 && a > 5");

You may invoke this method only within the document element (i.e. after the first start tag and before the last end tag).

Querying XML

in_element($name)

Return a true value if the most recent open element matches $name:

if ($writer->in_element('dl')) {

 $writer->startTag('dt');

} else {

 $writer->startTag('li');

}

within_element($name)

Return a true value if any open element matches $name:

if ($writer->within_element('body')) {

 $writer->startTag('h1');

} else {

 $writer->startTag('title');

}

current_element()

Return the name of the currently open element:

my $name = $writer->current_element();

This is the equivalent of

my $name = $writer->ancestor(0);

ancestor($n)

Return the name of the nth ancestor, where $n=0 for the current open element.

Additional Namespace Support

WARNING: you must not use these methods while you are writing a document, or the results will be unpredictable.

addPrefix($uri, $prefix)

Add a preferred mapping between a Namespace URI and a prefix. See also the PREFIX_MAP constructor parameter.

To set the default namespace, omit the $prefix parameter or set it to ''.

removePrefix($uri)

Remove a preferred mapping between a Namespace URI and a prefix.

To set the default namespace, omit the $prefix parameter or set it to '' [the empty string].

ERROR REPORTING

With the default settings, the XML::Writer module can detect several basic XML well-formedness errors:

· Lack of a (top-level) document element, or multiple document elements.

· Unclosed start tags.

· Misplaced delimiters in the contents of processing instructions or comments.

· Misplaced or duplicate XML declaration(s).

· Misplaced or duplicate DOCTYPE declaration(s).

· Mismatch between the document type name in the DOCTYPE declaration and the name of the document element.

· Mismatched start and end tags.

· Attempts to insert character data outside the document element.

· Duplicate attributes with the same name.

During Namespace processing, the module can detect the following additional errors:

· Attempts to use PI targets or element or attribute names containing a colon.

· Attempts to use attributes with names beginning "xmlns".

To ensure full error detection, a program must also invoke the end method when it has finished writing a document:

$writer->startTag('greeting');

$writer->characters("Hello, world!");

$writer->endTag('greeting');

$writer->end();

This error reporting can catch many hidden bugs in Perl programs that create XML documents; however, if necessary, it can be turned off by providing an UNSAFE parameter:

my $writer = new XML::Writer(OUTPUT => $output, UNSAFE => 1);

AUTHOR

David Megginson, david@megginson.com
SEE ALSO

XML::Parser

XML::XQL

A perl module for querying XML tree structures with XQL.

SYNOPSIS

use XML::XQL;

use XML::XQL::DOM;

$parser = new XML::DOM::Parser;

$doc = $parser->parsefile ("file.xml");

Return all elements with tagName='title' under the root element 'book'

$query = new XML::XQL::Query (Expr => "book/title");

@result = $query->solve ($doc);

Or (to save some typing)

@result = XML::XQL::solve ("book/title", $doc);

DESCRIPTION

The XML::XQL module implements the XQL (XML Query Language) proposal submitted to the XSL Working Group in September 1998. The spec can be found at: http://www.w3.org/TandS/QL/QL98/pp/xql.html Most of the contents related to the XQL syntax can also be found in the XML::XQL::Tutorial that comes with this distribution. Note that XQL is not the same as XML-QL!

The current implementation only works with the XML::DOM module, but once the design is stable and the major bugs are flushed out, other extensions might follow, e.g. for XML::Grove.

XQL was designed to be extensible and this implementation tries to stick to that. Users can add their own functions, methods, comparison operators and data types. Plugging in a new XML tree structure (like XML::Grove) should be a piece of cake.

To use the XQL module, either

use XML::XQL;

or

use XML::XQL::Strict;

The Strict module only provides the core XQL functionality as found in the XQL spec. By default (i.e. by using XML::XQL) you get 'XQL+', which has some additional features.

See the section 'Additional Features in XQL+' for the differences.

This module is still in development. See the To-do list in XQL.pm for what still needs to be done. Any suggestions are welcome, the sooner these implementation issues are resolved, the faster we can all use this module.

If you find a bug, you would do me great favor by sending it to me in the form of a test case. See the file t/template.t that comes with this distribution.

If you have written a cool comparison operator, function, method or XQL data type that you would like to share, send it to enno@att.com and I will add it to this module.

XML::XQL global functions

solve(QUERY_STRING, INPUT_LIST...)

@result = XML::XQL::solve ("doc//book", $doc);

This is provided as a shortcut for:

$query = new XML::XQL::Query (Expr => "doc//book");

@result = $query->solve ($doc);

defineFunction

defineFunction(NAME, FUNCREF, ARGCOUNT

 [, ALLOWED_OUTSIDE [, CONST, [QUERY_ARG]]]

)

Defines the XQL function (at the global level, i.e. for all newly created queries) with the specified NAME. The ARGCOUNT parameter can either be a single number or a reference to a list with numbers. A single number expands to [ARGCOUNT, ARGCOUNT]. The list contains pairs of numbers, indicating the number of arguments that the function allows. The value -1 means infinity. E.g. [2, 5, 7, 9, 12, -1] means that the function can have 2, 3, 4, 5, 7, 8, 9, 12 or more arguments. The number of arguments is checked when parsing the XQL query string.

The second parameter must be a reference to a Perl function or an anonymous sub. E.g. '\&my_func' or 'sub { ... code ... }'

If ALLOWED_OUTSIDE (default is 0) is set to 1, the function or method may also be used outside subqueries in node queries. (See NodeQuery parameter in Query constructor)

If CONST (default is 0) is set to 1, the function is considered to be "constant". See the section on "Constant Function Invocations" for details.

If QUERY_ARG (default is 0) is not -1, the argument with that index is considered to be a 'query parameter'. If the query parameter is a subquery, that returns multiple values, the result list of the function invocation will contain one result value for each value of the subquery. E.g. 'length(book/author)' will return a list of Numbers, denoting the string lengths of all the author elements returned by 'book/author'.

Note that only methods (not functions) may appear after a Bang "!" operator. This is checked when parsing the XQL query string.

See also: defineMethod

generateFunction

generateFunction(NAME, FUNCNAME, RETURN_TYPE

 [, ARGCOUNT [, ALLOWED_OUTSIDE [, CONST [, QUERY_ARG]]]])

Generates and defines an XQL function wrapper for the Perl function with the name FUNCNAME. The function name will be NAME in XQL query expressions. The return type should be one of the builtin XQL Data Types or a class derived from XML::XQL::PrimitiveType (see the section on "Adding Data Types".) See defineFunction for the meaning of ARGCOUNT, ALLOWED_OUTSIDE, CONST and QUERY_ARG.

Function values are always converted to Perl strings with xql_toString before they are passed to the Perl function implementation. The function return value is cast to an object of type RETURN_TYPE, or to the empty list [] if the result is undef. It uses expandType to expand XQL primitive type names. If RETURN_TYPE is "*", it returns the function result as is, unless the function result is undef, in which case it returns [].

defineMethod

defineMethod(NAME, FUNCREF, ARGCOUNT [, ALLOWED_OUTSIDE])

Defines the XQL method (at the global level, i.e. for all newly created queries) with the specified NAME. The ARGCOUNT parameter can either be a single number or a reference to a list with numbers. A single number expands to [ARGCOUNT, ARGCOUNT]. The list contains pairs of numbers, indicating the number of arguments that the method allows. The value -1 means infinity. E.g. [2, 5, 7, 9, 12, -1] means that the method can have 2, 3, 4, 5, 7, 8, 9, 12 or more arguments. The number of arguments is checked when parsing the XQL query string.

The second parameter must be a reference to a Perl function or an anonymous sub. E.g. '\&my_func' or 'sub { ... code ... }'

If ALLOWED_OUTSIDE (default is 0) is set to 1, the function or method may also be used outside subqueries in node queries. (See NodeQuery parameter in Query constructor)

Note that only methods (not functions) may appear after a Bang "!" operator. This is checked when parsing the XQL query string.

See also: defineFunction

defineComparisonOperators

defineComparisonOperators(NAME => FUNCREF [, NAME => FUNCREF]*)

Defines XQL comparison operators at the global level. The FUNCREF parameters must be references to a Perl function or an anonymous sub. E.g. '\&my_func' or 'sub { ... code ... }'

E.g. define the operators my_op and my_op2:

defineComparisonOperators ('my_op' => \&my_op,

 'my_op2' => sub { ... insert code here ... });

defineElementValueConvertor

defineElementValueConvertor(TAG_NAME, FUNCREF)

Defines that the result of the value() call for Elements with the specified TAG_NAME uses the specified function. The function will receive two parameters. The second one is the TAG_NAME of the Element node and the first parameter is the Element node itself. FUNCREF should be a reference to a Perl function, e.g. \&my_sub, or an anonymous sub.

E.g. to define that all Elements with tag name 'date-of- birth' should return XML::XQL::Date objects:

defineElementValueConvertor ('date-of-birth', sub {

 my $elem = shift;

 # Always pass in the node as the second parameter. This is

 # the reference node for the object, which is used when

 # sorting values in document order.

 new XML::XQL::Date ($elem->xql_text, $elem);

});

These convertors can only be specified at a global level, not on a per query basis. To undefine a convertor, simply pass a FUNCREF of undef.

defineAttrValueConvertor

defineAttrValueConvertor (ELEM_TAG_NAME, ATTR_NAME, FUNCREF)

Defines that the result of the value() call for Attributes with the specified ATTR_NAME and a parent Element with the specified ELEM_TAG_NAME uses the specified function. An ELEM_TAG_NAME of "*" will match regardless of the tag name of the parent Element. The function will receive 3 parameters. The third one is the tag name of the parent Element (even if ELEM_TAG_NAME was "*"), the second is the ATTR_NAME and the first is the Attribute node itself. FUNCREF should be a reference to a Perl function, e.g. \&my_sub, or an anonymous sub.

These convertors can only be specified at a global level, not on a per query basis. To undefine a convertor, simply pass a FUNCREF of undef.

defineTokenQ (Q)

Defines the token for the q// string delimiters at a global level. The default value for XQL+ is 'q', for XML::XQL::Strict it is undef. A value of undef will deactivate this feature.

defineTokenQQ (QQ)

Defines the token for the qq// string delimiters at a global level. The default value for XQL+ is 'qq', for XML::XQL::Strict it is undef. A value of undef will deactivate this feature.

expandType (TYPE)

Used internally to expand type names of XQL primitive types. E.g. it expands "Number" to "XML::XQL::Number" and is not case-sensitive, so "number" and "NuMbEr" will both expand correctly.

defineExpandedTypes(ALIAS, FULL_NAME [, ...])

For each pair of arguments it allows the class name FULL_NAME to be abbreviated with ALIAS. The definitions are used by expandType(). (ALIAS is always converted to lowercase internally, because expandType is case-insensitive.)

Overriding the ALIAS for "date", also affects the object type returned by the date() function.

setErrorContextDelimiters(START, END, BOLD_ON, BOLD_OFF)

Sets the delimiters used when printing error messages during query evaluation. The default delimiters on Unix are `tput smul` (underline on) and `tput rmal` (underline off). On other systems (that don't have tput), the delimiters are ">>" and "<<" respectively.

When printing the error message, the subexpression that caused the error will be enclosed by the delimiters, i.e. underlined on Unix.

For certain subexpressions the significant keyword, e.g. "and" is enclosed in the bold delimiters BOLD_ON (default: `tput bold` on Unix, "" elsewhere) and BOLD_OFF (default: (`tput rmul` . `tput smul`) on Unix, "" elsewhere, see $BoldOff in XML::XQL::XQL.pm for details.)

isEmptyList(VAR)

Returns 1 if VAR is [], else 0. Can be used in user defined functions.

XML::XQL::Query methods

The following functions are also available at the query level, i.e. when called on a Query object they only affect this Query and no others:

defineFunction, defineMethod, defineComparisonOperators, defineTokenQ, defineTokenQQ

See 'XML::XQL Global functions' for details. Another way to define these features for a particular Query is by passing the appropriate values to the XML::XQL::Query constructor.

solve(INPUT_LIST...)

Note that solve takes a list of nodes which are assumed to be in document order and must belong to the same document. E.g:

$query = new XML::XQL::Query (Expr => "doc//book");

@result = $query->solve ($doc);

@result2 = $query->solve ($node1, $node2, $node3);

XML::XQL::Query constructor

Usage, e.g:

$query = new XML::XQL::Query(

 Expr => "book/author",

 Func => [myfunc => \&my_func, # define 2 functions

 myfunc2 => \&my_func2],

 FuncArgCount => [myfunc2 => [2, -1]], # myfunc2 has 2 or more args

 AllowedOutSideSubquery => [myfunc => 1],

 ConstFunc => [myfunc2 => 1],

 CompareOper => [mycmp => \&mycmp], # define comparison operator

 q => "str"); # use str// as string delim

Expr => STRING
The query expression to be evaluated.

NodeQuery => BOOLEAN
If set to 1, the query is a Node Query as opposed to a Full Query (which is the default.) A node query is a query that is only capable of returning Nodes. A full query is capable of returning Node values and non-Node values. Non- Node values include XML Primitives, element type names, namespace URI's, concatenated text nodes, and node type names. The distinction is significant because node queries may appear as XSL match and select patterns, while full queries have use in other applications. The difference between the two forms of queries is trivial and exists only as constraints on the syntax of node queries. Node queries may contain nested full queries.

Func => [FUNCNAME => FUNCREF, ...]
Defines one or more functions. FUNCNAME is the name as used in the query expression. FUNCREF can be either a function reference like \&my_func or an anonymous sub. See also: defineFunction

Method => [FUNCNAME => FUNCREF, ...]
Defines one or more methods. FUNCNAME is the name as used in the query expression. FUNCREF can be either a function reference like \&my_func or an anonymous sub. See also: defineMethod

FuncArgCount => [FUNCNAME => ARGCOUNT, ...]
Defines the number of arguments for one or more functions or methods. FUNCNAME is the name as used in the query expression. See also: defineFunction and defineMethod

AllowedOutsideSubquery => [FUNCNAME => BOOLEAN, ...]
Defines whether the specified function or method is allowed outside subqueries. FUNCNAME is the name as used in the query expression. See also: defineFunction and defineMethod

ConstFunc => [FUNCNAME => BOOLEAN, ...]
Defines whether the function (not method!) is a "constant" function. FUNCNAME is the name as used in the query expression. See the section on "Constant Function Invocations" for a definition of "constant" See also: defineFunction and defineMethod

CompareOper => [OPERNAME => FUNCREF, ...]
Defines the comparison operator with the specified OPERNAME, e.g. if OPERNAME is "contains", you can use "$contains$" in the query. See also: defineComparisonOperators

q => TOKEN
 Defines the q// token. See also: defineTokenQ

qq => TOKEN

 Defines the qq// token. See also: defineTokenQQ

Error => FUNCREF

Defines the function that is called when errors occur during parsing the query expression. The default function prints an error message to STDERR.

Debug => FLAGS
Sets the debug level for the Yapp parser that parses the query expression. Default value is 0 (don't print anything). The maximum value is 0x17, which prints a lot of stuff. See the Parse::Yapp manpage for the meaning of the individual bits.

Reserved hash keys

Users may add their own (key, value) pairs to the Query constructor. Beware that the key 'Tree' is used internally.

Additional Features in XQL+

Sequence operators ';' and ';;'

The sequence operators ';' (precedes) and ';;' (immediately precedes) are not in the XQL spec, but are described in 'The Design of XQL' by Jonathan Robie who is one of the designers of XQL. It can be found at http://www.texcel.no/whitepapers/xql-design.html See also the XQL Tutorial for a description of what they mean.

q// and qq// String Tokens

String tokens a la q// and qq// are allowed. q// evaluates like Perl's single quotes and qq// like Perl's double quotes. Note that the default XQL strings do not allow escaping etc., so it's not possible to define a string with both single and double quotes. If 'q' and 'qq' are not to your liking, you may redefine them to something else or undefine them altogether, by assigning undef to them. E.g:

at a global level - shared by all queries (that don't (re)define 'q')

XML::XQL::defineTokenQ ('k');

XML::XQL::defineTokenQQ (undef);

at a query level - only defined for this query

$query = new XML::XQL::Query (Expr => "book/title", q => 'k', qq => undef);

From now on k// works like q// did and qq// doesn't work at all anymore.

Comments

Query strings can have embedded Comments

For example:

$queryExpr = "book/title # this comment is inside the query string

 [. = 'Moby Dick']"; # this comment is outside

Optional dollar delimiters and case-insensitive XQL keywords

The following XQL keywords are case-insensitive and the dollar sign delimiters may be omitted: and, or, not, $union$, $intersect$, to, any, all, eq, ne, lt, gt, ge, le, ieq, ine, ilt, igt, ige, ile.

E.g. AND, And, aNd, and, And, aNd are all valid replacements for and.

Note that XQL+ comparison operators ($match$, no_match, isa, can) still require dollar delimiters and are case- sensitive.

Comparison operator: $match$ or '=~'

E.g. "book/title =~ '/(Moby|Dick)/']" will return all book titles containing Moby or Dick. Note that the match expression needs to be quoted and should contain the // or m// delimiters for Perl.

When casting the values to be matched, both are converted to Text.

Comparison operator: no_match or '!~'

E.g. "book/title !~ '/(Moby|Dick)/']" will return all book titles that don't contain Moby or Dick. Note that the match expression needs to be quoted and should contain the // or m// delimiters for Perl.

When casting the values to be matched, both are converted to Text.

Comparison operator: isa
E.g. '//. isa "XML::XQL::Date"' returns all elements for which the value() function returns an XML::XQL::Date object. (Note that the value() function can be overridden to return a specific object type for certain elements and attributes.) It uses expandType to expand XQL primitive type names.

Comparison operator: can
E.g. '//. can "swim"' returns all elements for which the value() function returns an object that implements the (Perl) swim() method. (Note that the value() function can be overridden to return a specific object type for certain elements and attributes.)

Function: once(QUERY)
E.g. 'once(id("foo"))' will evaluate the QUERY expression only once per query. Certain query results (like the above example) will always return the same value within a query. Using once() will cache the QUERY result for the rest of the query.

Note that "constant" function invocations are always cached. See also the section on "Constant Function Invocations"

Function: subst(QUERY, EXPR, EXPR [,MODIFIERS, [MODE]])
E.g. 'subst(book/title, "[M|m]oby", "Dick", "g")' will replace Moby or moby with Dick globally ("g") in all book title elements. Underneath it uses Perl's substitute operator s///. Don't worry about which delimiters are used underneath. The function returns all the book/titles for which a substitution occurred. The default MODIFIERS string is "" (empty.) The function name may be abbreviated to "s".

For most Node types, it converts the value() to a string (with xql_toString) to match the string and xql_setValue to set the new value in case it matched. For XQL primitives (Boolean, Number, Text) and other data types (e.g. Date) it uses xql_toString to match the String and xql_setValue to set the result. Beware that performing a substitution on a primitive that was found in the original XQL query expression, changes the value of that constant.

If MODE is 0 (default), it treats Element nodes differently by matching and replacing text blocks occurring in the Element node. A text block is defined as the concatenation of the raw text of subsequent Text, CDATASection and EntityReference nodes. In this mode it skips embedded Element nodes. If a text block matches, it is replaced by a single Text node, regardless of the original node type(s).

If MODE is 1, it treats Element nodes like the other nodes, i.e. it converts the value() to a string etc. Note that the default implementation of value() calls text(), which normalizes whitespace and includes embedded Element descendants (recursively.) This is probably not what you want to use in most cases, but since I'm not a professional psychic... :-)
Function: map(QUERY, CODE)
E.g. 'map(book/title, "s/[M|m]oby/Dick/g; $_")' will replace Moby or moby with Dick globally ("g") in all book title elements. Underneath it uses Perl's map operator. The function returns all the book/titles for which a change occurred.

??? add more specifics

Function: eval(EXPR [,TYPE])
Evaluates the Perl expression EXPR and returns an object of the specified TYPE. It uses expandType to expand XQL primitive type names. If the result of the eval was undef, the empty list [] is returned.

E.g. 'eval("2 + 5", "Number")' returns a Number object with the value 7, and 'eval("%ENV{USER}")' returns a Text object with the user name.

Consider using once() to cache the return value, when the invocation will return the same result for each invocation within a query.

??? add more specifics

Function: new(TYPE [, QUERY [, PAR] *])
Creates a new object of the specified object TYPE. The constructor may have any number of arguments. The first argument of the constructor (the 2nd argument of the new() function) is considered to be a 'query parameter'. See defineFunction for a definition of query parameter. It uses expandType to expand XQL primitive type names.

Method: DOM_nodeType()
Returns the DOM node type. Note that these are mostly the same as nodeType(), except for CDATASection and EntityReference nodes. DOM_nodeType() returns 4 and 5 respectively, whereas nodeType() returns 3, because they are considered text nodes.

Function wrappers for Perl builtin functions

XQL function wrappers have been provided for most Perl builtin functions. When using a Perl builtin function like "substr" in an XQL+ query, an XQL function wrapper will be generated on the fly. The arguments to these functions may be regular XQL+ subqueries (that return one or more values) for a query parameter (see generateFunction for a definition.) Most wrappers of Perl builtin functions have argument 0 for a query parameter, except for: chmod (parameter 1 is the query parameter), chown (2) and utime (2). The following funcitons have no query parameter, which means that all parameters should be a single value: atan2, rand, srand, sprintf, rename, unlink, system.

The function result is cast to the appropriate XQL primitive type (Number, Text or Boolean), or to an empty list if the result was undef.

Implementation Details

XQL Builtin Data Types

The XQL engine uses the following object classes internally. Only Number, Boolean and Text are considered primitive XQL types:

XML::XQL::Number
For integers and floating point numbers.
XML::XQL::Boolean
For booleans, e.g returned by true() and false().
XML::XQL::Text
For string values.
XML::XQL::Date
For date, time and date/time values. E.g. returned by the date() function.
XML::XQL::Node
Superclass of all XML node types. E.g. all subclasses of XML::DOM::Node subclass from this.
Perl list reference
Lists of values are passed by reference (i.e. using [] delimiters). The empty list [] has a double meaning. It also means 'undef' in certain situations, e.g. when a function invocation or comparison failed.
Type casting in comparisons

When two values are compared in an XML comparison (e.g. eq) the values are first cast to the same data type. Node values are first replaced by their value() (i.e. the XQL value() function is used, which returns a Text value by default, but may return any data type if the user so chooses.) The resulting values are then cast to the type of the object with the highest xql_primType() value. They are as follows: Node (0), Text (1), Number (2), Boolean (3), Date (4), other data types (4 by default, but this may be overriden by the user.)

E.g. if one value is a Text value and the other is a Number, the Text value is cast to a Number and the resulting low- level (Perl) comparison is (for eq):

$number->xql_toString == $text->xql_toString

If both were Text values, it would have been

$text1->xql_toString eq $text2->xql_toString

Note that the XQL spec is vague and even conflicting where it concerns type casting. This implementation resulted after talking to Joe Lapp, one of the spec writers.

Adding Data Types

If you want to add your own data type, make sure it derives from XML::XQL::PrimitiveType and implements the necessary methods.

I will add more stuff here to explain it all, but for now, look at the code for the primitive XQL types or the Date class (in Date.pm.)

Document Order

The XQL spec states that query results always return their values in document order, which means the order in which they appeared in the original XML document. Values extracted from Nodes (e.g. with value(), text(), rawText(), nodeName(), etc.) always have a pointer to the reference node (i.e. the Node from which the value was extracted.) These pointers are acknowledged when (intermediate) result lists are sorted. Currently, the only place where a result list is sorted is in a $union$ expression, which is the only place where the result list can be unordered. (If you find that this is not true, let me know.)

Non-node values that have no associated reference node, always end up at the end of the result list in the order that they were added. The XQL spec states that the reference node for an XML Attribute is the Element to which it belongs, and that the order of values with the same reference node is undefined. This means that the order of an Element and its attributes would be undefined. But since the XML::DOM module keeps track of the order of the attributes, the XQL engine does the same, and therefore, the attributes of an Element are sorted and appear after their parent Element in a sorted result list.

Constant Function Invocations

If a function always returns the same value when given "constant" arguments, the function is considered to be "constant". A "constant" argument can be either an XQL primitive (Number, Boolean, Text) or a "constant" function invocation. E.g.

date("12-03-1998")

true()

sin(0.3)

length("abc")

date(substr("12-03-1998 is the date", 0, 10))

are constant, but not:

length(book[2])

Results of constant function invocations are cached and calculated only once for each query. See also the CONST parameter in defineFunction. It is not necessary to wrap constant function invocations in a once() call.

Constant XQL functions are: date, true, false and a lot of the XQL+ wrappers for Perl builtin functions. Function wrappers for certain builtins are not made constant on purpose to force the invocation to be evaluated every time, e.g. 'mkdir("/user/enno/my_dir", "0644")' (although constant in appearance) may return different results for multiple invocations. See %PerlFunc in Plus.pm for details.

Function: count([QUERY])
The count() function has no parameters in the XQL spec. In this implementation it will return the number of QUERY results when passed a QUERY parameter.

Method: text([RECURSE])
When expanding an Element node, the text() method adds the expanded text() value of sub-Elements. When RECURSE is set to 0 (default is 1), it will not include sub-elements. This is useful e.g. when using the $match$ operator in a recursive context (using the // operator), so it won't return parent Elements when one of the children matches.

Method: rawText([RECURSE])
See text().

SEE ALSO

The XQL spec at http://www.w3.org/TandS/QL/QL98/pp/xql.html
The Design of XQL at http://www.texcel.no/whitepapers/xql- design.html
The DOM Level 1 specification at http://www.w3.org/TR/REC-DOM-Level-1
The XML spec (Extensible Markup Language 1.0) at http://www.w3.org/TR/REC-xml
The XML::Parser and XML::Parser::Expat manual pages.

AUTHOR

Please send bugs, comments and suggestions to Enno Derksen <enno@att.com>
Perl Packages for Databases

x

URLs in this Chapter

x

See Also

